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Abstract

Céu is a synchronous programming language for embedded
soft real-time systems. It focuses on control-flow safety fea-
tures, such as safe shared-memory concurrency and safe
abortion of lines of execution, while enforcing memory-
bounded, deterministic, and terminating reactions to the
environment. In this work, we present a small-step struc-
tural operational semantics forCéu and a proof that reactions
have the properties enumerated above: that for a given ar-
bitrary timeline of input events, multiple executions of the
same program always react in bounded time and arrive at
the same final finite memory state.

CCSConcepts ·Theory of computation→Operational

semantics; · Software and its engineering → Concur-

rent programming languages; · Computer systems or-

ganization→ Embedded software;

Keywords Determinism, Termination, Operational seman-
tics, Synchronous languages

ACM Reference Format:

Rodrigo C.M. Santos, Guilherme F. Lima, Francisco Sant’Anna,
Roberto Ierusalimschy, and Edward H. Haeusler. 2018. A Memory-
Bounded, Deterministic and Terminating Semantics for the Syn-
chronous Programming Language Céu. In Proceedings of 19th ACM

SIGPLAN/SIGBED Conference on Languages, Compilers, and Tools for

Embedded Systems (LCTES’18). ACM, New York, NY, USA, 18 pages.
https://doi.org/10.1145/3211332.3211334

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

LCTES’18, June 19ś20, 2018, Philadelphia, PA, USA

© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5803-3/18/06. . . $15.00
https://doi.org/10.1145/3211332.3211334

1 Introduction

Céu [17, 19] is a Esterel-based [8] programming language
for embedded soft real-time systems that aims to offer a
concurrent, safe, and expressive alternative to C with the
characteristics that follow:

Reactive: code only executes in reactions to events.
Structured: programs use structured control mechanisms,

such as await (to suspend a line of execution), and par

(to combine multiple lines of execution).
Synchronous: reactions run atomically and to completion

on each line of execution, i.e., there’s no implicit pre-
emption or real parallelism.

Structured reactive programming lets developers write code
in direct style, recovering from the inversion of control im-
posed by event-driven execution [1, 13, 16]. Synchronous
languages offer a simple run-to-completion execution model
that enables deterministic execution and make formal rea-
soning tractable. For this reason, it has been successfully
adopted in safety-critical real-time embedded systems [3].
Previous work in the context of embedded sensor net-

works evaluates the expressiveness of Céu in comparison to
event-driven code in C and attests a reduction in source code
size (around 25%) with a small increase in memory usage
(around 5ś10%) [19]. Céu has also been used in the context
of multimedia systems [20] and games [18].

Céu inherits the synchronous and imperative mindset of
Esterel but adopts a simpler semantics with fine-grained exe-
cution control. The list that follows summarizes the semantic
peculiarities of Céu [17]:

• Fine-grained, intra-reaction deterministic execution,
which makes Céu fully deterministic.

• Stack-based execution for internal events, which pro-
vides a limited but memory-bounded form of subrou-
tines.

• Finalization mechanism for lines of execution, which
makes abortion safe with regard to external resources.

In this work, we present a formal small-step structural
operational semantics for Céu and prove that it enforces
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memory-bounded, deterministic, and terminating reactions
to the environment, i.e., that for a given arbitrary timeline
of input events, multiple executions of the same program
always react in bounded time and arrive at the same final
finite memory state. Conceiving a formal semantics for Céu
leads to a number of capabilities and outcomes as follows:

1. Understanding, finding corner cases, and stabilizing
the language. After the semantics was complete and
discussed in extent in our group, we found a critical
bug in the order of execution of statements.

2. Explaining core aspects of the language in a reduced,
precise, and unambiguous way. This is particularly
important when comparing languages that are similar
in the surface (e.g., Céu and Esterel).

3. Implementing the language. A small-step operational
semantics describes an abstract machine that is close
to a concrete implementation. The current implemen-
tation of the Céu scheduler is based on the formal
semantics presented in this paper.

4. Proving properties for particular or all programs in the
language. For instance, in this work, we prove that all
programs in Céu are memory bounded, deterministic,
and react in finite time.

The last item is particularly important in the context of
constrained embedded systems:

Memory Boundedness: At compile time, we can ensure
that the program fits in the device’s restricted memory
and that it will not grow unexpectedly during runtime.

Deterministic Execution: We can simulate an entire pro-
gram execution providing an input history with the
guarantee that it will always have the same behavior.
This can be done in negligible time in a controlled
development environment before deploying the appli-
cation to the actual device (e.g., by multiple developers
in standard desktops).

Terminating Reactions: Real-time applicationsmust guar-
antee responses within specified deadlines. A terminat-
ing semantics enforces upper bounds for all reactions
and guarantees that programs always progress with
the time.

2 Céu

Céu [17, 19] is a synchronous reactive language in which
programs evolve in a sequence of discrete reactions to ex-
ternal events. It is designed for control-intensive applica-
tions, supporting concurrent lines of execution, known as
trails, and instantaneous broadcast communication through
events. Computations within a reaction (such as expressions,
assignments, and system calls) are also instantaneous con-
sidering the synchronous hypothesis [9]. Céu provides an
await statement that blocks the current running trail allow-
ing the program to execute its other trails; when all trails

are blocked, the reaction terminates and control returns to
the environment.

In Céu, every execution path within loops must contain at
least one await statement to an external input event [6, 19].
This restriction, which is statically checked by the compiler,
ensures that every reaction runs in bounded time, eventually
terminating with all trails blocked in await statements. Céu
has an additional restriction, which it shares with Esterel
and synchronous languages in general [4]: computations that
take a non-negligible time to run (e.g., cryptography or image
processing algorithms) violate the zero-delay hypothesis, and
thus cannot be directly implemented.
Listing 1 shows a compact reference of Céu.

// Declarations

input ⟨type⟩ ⟨id⟩; // declares an external input event

event ⟨type⟩ ⟨id⟩; // declares an internal event

var ⟨type⟩ ⟨id⟩; // declares a variable

// Event handling

⟨id⟩ = await ⟨id⟩; // awaits event and assigns the received value

emit ⟨id⟩(⟨expr⟩); // emits event passing a value

// Control flow

⟨stmt⟩ ; ⟨stmt⟩ // sequence

if ⟨expr⟩ then ⟨stmt⟩ else ⟨stmt⟩ end // conditional

loop do ⟨stmt⟩ end // repetition

every ⟨id⟩ in ⟨id⟩ do ⟨stmt⟩ end // event iteration

finalize [⟨stmt⟩] with ⟨stmt⟩ end // finalization

// Logical parallelism

par/or do ⟨stmt⟩ with ⟨stmt⟩ end // aborts if any side ends

par/and do ⟨stmt⟩ with ⟨stmt⟩ end // terminates if all sides end

// Assignment & Integration with C

⟨id⟩ = ⟨expr⟩; // assigns a value to a variable

_⟨id⟩(⟨exprs⟩) // calls a C function (id starts with ‘_’ )

Listing 1. The concrete syntax of Céu.

Listing 2 shows a complete example in Céu that toggles
a LED whenever a radio packet is received, terminating on
a button press always with the LED off. The program first
declares the BUTTON and RADIO_RECV as input events (ln. 1ś2).
Then, it uses a par/or composition to run two activities in
parallel: a single-statement trail that waits for a button press
before terminating (ln. 4), and an endless loop that toggles
the LED on and off on radio receives (ln. 9ś14). The finalize

clause (ln. 6ś8) ensures that, no matter how its enclosing trail
terminates, the LED will be unconditionally turned off (ln. 7).
The par/or composition, which stands for a parallel-or,

provides an orthogonal abortion mechanism [4] in which
its composed trails do not know when and how they are
aborted (i.e., abortion is external to them). The finalization
mechanism extends orthogonal abortion to activities that
use stateful resources from the environment (such as files
and network handlers), as we discuss in Section 2.3.
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In Céu, any identifier prefixed with an underscore (e.g.,
_led) is passed unchanged to the underlying C compiler.
Therefore, access to C is straightforward and syntactically
traceable. To ensure that programs operate under the syn-
chronous hypothesis, the compiler environment should only
provide access to C operations that can be assumed to be
instantaneous, such as non-blocking I/O and simple data
structure accessors.1

1 input void BUTTON;

2 input void RADIO_RECV;

3 par/or do

4 await BUTTON;

5 with

6 finalize with

7 _led(0);

8 end

9 loop do

10 _led(1);

11 await RADIO_RECV;

12 _led(0);

13 await RADIO_RECV;

14 end

15 end

Listing 2. A Céu program that toggles a LED on receive,
terminating on a button always with the LED off.

2.1 External and Internal Events

Céu defines time as a discrete sequence of reactions to unique
external input events received from the environment. Each
input event delimits a new logical unit of time that triggers
an associated reaction. The life-cycle of a program in Céu

can be summarized as follows [19]:

(i) The program initiates a łboot reactionž in a single trail
(parallel constructs may create new trails).

(ii) Active trails execute until they await or terminate, one
after another. This step is called a reaction chain, and
always runs in bounded time.

(iii) When all trails are blocked, the program goes idle and
the environment takes control.

(iv) On the occurrence of a new external input event, the
environment awakes all trails awaiting that event, and
the program goes back to step (ii).

A program must react to an event completely before han-
dling the next one. By the synchronous hypothesis, the time
the program spends in step (ii) is conceptually zero (in prac-
tice, negligible). Hence, from the point of view of the environ-
ment, the program is always idle on step (iii). In practice, if
a new external input event occurs while a reaction executes,
the event is saved on a queue, which effectively schedules it
to be processed in a subsequent reaction.

1 The actual implementation of Céu supports a command-line option that
accepts a white list of library calls. If a program tries to use a function not
in the list, the compiler raises an error.

2.1.1 External Events and Discrete Time

The sequential processing of external input events induces a
discrete notion of time in Céu, as illustrated in Figure 1. The
continuous timeline shows an absolute reference clock with
łphysical timestampsž for the event occurrences (e.g., event C
occurs at 17ms521us). The discrete timeline shows how the
same occurring events fit in the logical notion of time of
Céu. The boot reaction boot-0 happens before any input, at
program startup. Event A łphysicallyž occurs during boot-0

but, because time is discrete, its corresponding reaction only
executes afterwards, at logical instant A-1. Similarly, event B
occurs during A-1 and its reaction is postponed to execute
at B-2. Event C also occurs during A-1 but its reaction must
also wait for B-2 to execute and so it is postponed to execute
at C-3. Finally, event D occurs during an idle period and can
start immediately at D-4.
Unique input events imply mutually exclusive reactions,

which execute atomically and never overlap. Automatic mu-
tual exclusion is a prerequisite for deterministic reactions as
we discuss in Section 3.

In practice, the synchronous hypothesis forCéu holds if re-
actions execute faster than the rate of incoming input events.
Otherwise, the program would continuously accumulate de-
lays between physical occurrences and actual reactions for
the input events. Considering the context of soft real-time
systems, postponed reactions might be tolerated as long as
they are infrequent and the application does not take too
long to catch up with real time. Note that the synchronous
semantics is also the norm in typical event-driven systems,
such as event dispatching in UI toolkits, game loops in game
engines, and clock ticks in embedded systems.

2.1.2 Internal Events as Subroutines

In Céu, queue-based processing of events applies only to
external input events, i.e., events submitted to the program
by the environment. Internal events, which are events gen-
erated internally by the program via emit statements, are
processed in a stack-based manner. Internal events provide
a fine-grained execution control, and, because of their stack-
based processing, can be used to implement a limited form
of subroutines, as illustrated in Listing 3.

In the example, the łsubroutinež inc is defined as an event
iterator (ln. 4ś6) that continuously awaits its identifying
event (ln. 4), and increments the value passed by reference

Continuous

Timeline

(Real World)
0ms000us 17ms521us 30ms000us
x

A B C DExternal Input

Discrete

Timeline

(Céu)

x x x x x x xboot-0 A-1 B-2 C-3 D-4

Idle period

Figure 1. The discrete notion of time in Céu.
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(ln. 5). A trail in parallel (ln. 8ś11) invokes the subroutine
through two consecutive emit statements (ln. 9ś10). Given
the stack-based execution for internal events, as the first
emit executes, the calling trail pauses (ln. 9), the subrou-
tine awakes (ln. 4), runs its body (yielding v=2), iterates, and
awaits the next łcallž (ln. 4, again). Only after this sequence
does the calling trail resumes (ln. 9), makes a new invocation
(ln. 10), and passes the assertion test (ln. 11).

1 event int* inc; // declares subroutine "inc"

2 par/or do

3 var int* p;

4 every p in inc do // implements "inc" as event iterator

5 *p = *p + 1;

6 end

7 with

8 var int v = 1;

9 emit inc(&v); // calls "inc"

10 emit inc(&v); // calls "inc"

11 _assert(v==3); // asserts result after the two returns

12 end

Listing 3. A łsubroutinež that increments its argument.

Céu also supports nested emit invocations, e.g., the body
of the subroutine inc (ln. 5) could emit an event targeting
another subroutine, creating a new level in the stack. We
can think of the stack as a record of the nested, fine-grained
internal reactions that happen inside the same outer reaction
to a single external event.

This form of subroutines has a significant limitation that
it cannot express recursion, since an emit to itself is always
ignored as a running trail cannot be waiting on itself. That
being said, it is this very limitation that brings important
safety properties to subroutines. First, they are guaranteed
to react in bounded time. Second, memory for locals is also
bounded, not requiring data stacks.

At first sight, the constructions łevery e do ⟨· · ·⟩ endž and
łloop do await e; ⟨· · ·⟩ endž seem to be equivalent. However,
the loop variation would not compile since it does not con-
tain an external input await (e is an internal event). The every

variation compiles because event iterators have an additional
syntactic restriction that they cannot contain break or await
statements. This restriction guarantees that an iterator never
terminates from itself and, thus, always awaits its identify-
ing event, essentially behaving as a safe blocking point in
the program. For this reason, the restriction that execution
paths within loops must contain at least one external await
is extended to alternatively contain an every statement.

2.2 Shared-Memory Concurrency

Embedded applications make extensive use of global mem-
ory and shared resources, such as through memory-mapped
registers and system calls to device drivers. Hence, an impor-
tant goal of Céu is to ensure a reliable behavior for programs

with concurrent lines of execution sharing memory and in-
teracting with the environment.

InCéu, whenmultiple trails are active in the same reaction,
they are scheduled in lexical order, i.e., in the order they
appear in the program source code. For instance, consider
the examples in Figure 2, both defining shared variables
(ln. 3), and assigning to them in parallel trails (ln. 6, 9).

In [a], the two assignments to x can only execute in re-
actions to different events A and B (ln. 5, 8), which cannot
occur simultaneously by definition. Hence, for the sequence
of events A->B, x becomes 4, while for B->A, x becomes 3.

In [b], the two assignments to y are simultaneous because
they execute in reaction to the same event A. Since Céu

employs lexical order for intra-reaction statements, the exe-
cution is still deterministic, and y always becomes 4 ((1+1)*2).
However, note that an apparently innocuous change in the
order of trails modifies the behavior of the program. To miti-
gate this threat,Céu performs concurrency checks at compile
time to detect conflicting accesses to shared variables: if a
variable is written in a trail segment, then a concurrent trail
segment cannot access that variable [19]. Nonetheless, the
static checks are optional and are not a prerequisite for the
deterministic semantics of the language.

2.3 Abortion and Finalization

The par/or of Céu is an orthogonal abortion mechanism be-
cause the two sides in the composition need not be tweaked
with synchronization primitives nor state variables to affect
each other. In addition, abortion is immediate in the sense
that it executes atomically inside the current micro reaction.
Immediate orthogonal abortion is a distinctive feature of syn-
chronous languages and cannot be expressed effectively in
traditional (asynchronous) multi-threaded languages [4, 14].
However, aborting lines of execution that deal with re-

sources may lead to inconsistencies. Therefore, Céu provides
a finalize construct to unconditionally execute a series of
statements even if the enclosing block is externally aborted.

1input void A;

2input void B;

3var int x = 1;

4par/and do

5await A;

6x = x + 1;

7with

8await B;

9x = x * 2;

10end

[a] Accesses to x are never con-
current.

input void A;

// (empty line)

var int y = 1;

par/and do

await A;

y = y + 1;

with

await A;

y = y * 2;

end

[b] Accesses to y are concurrent
but still deterministic.

Figure 2. Shared-memory concurrency in Céu: [a] is safe
because the trails access x atomically in different reactions;
[b] is unsafe because both trails access y in the same reaction
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Céu also enforces, at compile time, the use of finalize for
system calls that deal with pointers representing resources,
as illustrated in the two examples of Figure 3. If Céu passes
a pointer to a system call (ln. [a]:5), the pointer represents a
local resource (ln. [a]:2) that requires finalization (ln. [a]:7).
If Céu receives a pointer from a system call return (ln. [b]:4),
the pointer represents an external resource (ln. [b]:2) that
requires finalization (ln. [b]:6).
Céu tracks the interaction of system calls with pointers

and requires finalization clauses to accompany them. In Fig-
ure 3.a, the local variable msg (ln. 2) is an internal resource
passed as a pointer to _send (ln. 5), which is an asynchro-
nous call that transmits the buffer in the background. If the
block aborts (ln. 11) before receiving an acknowledge from
the environment (ln. 9), the local msg goes out of scope and
the external transmission now holds a dangling pointer. The
finalization ensures that the transmission also aborts (ln. 7).
In Figure 3.b, the call to _fopen (ln. 4) returns an external file
resource as a pointer. If the block aborts (ln. 12) during the
await A (ln. 9), the file remains open as a memory leak. The
finalization ensures that the file closes properly (ln. 6). In
both cases, the code does not compile without the finalize.2

The finalization mechanism of Céu is fundamental to
preserve the orthogonality of the par/or construct since the
clean up code is encapsulated in the aborted trail itself.

3 Formal Semantics

In this section, we introduce a reduced, abstract syntax for
Céu and present an operational semantics that formalizes
the behavior of its programs. The semantics deals only with
the control aspects of Céu. Side-effects and system calls are
encapsulated in a memory access primitive and are assumed
to behave like in conventional imperative languages.

2The compiler only forces the programmer to write the finalization clause,
but cannot check if it actually handles the resource properly.

1par/or do

2var _msg_t msg;

3⟨· · ·⟩ // prepare msg

4finalize

5_send(&msg);

6with

7_cancel(&msg);

8end

9await SEND_ACK;

10with

11⟨· · ·⟩

12end

13// (empty line)

[a] Local resource finalization.

par/or do

var _FILE* f;

finalize

f = _fopen(. . .);

with

_fclose(f);

end

_fwrite(. . ., f);

await A;

_fwrite(. . ., f);

with

⟨· · ·⟩

end

[b] External resource finalization.

Figure 3. Céu enforces the use of finalization to prevent
dangling pointers and memory leaks.

3.1 Abstract Syntax

The grammar below defines the syntax of a subset of Céu
that is sufficient to describe all peculiarities of the language.

P F mem(id) any memory access to łidž
| awaitext(id) await external event łidž
| awaitint(id) await internal event łidž
| emitint(id) emit internal event łidž
| break loop escape
| if mem(id) then P1 else P2 conditional
| P1 ; P2 sequence
| loop P1 repetition
| every id P1 event iteration
| P1 and P2 par/and
| P2 or P2 par/or
| fin P finalization
| P1 @loop P2 unwinded loop
| P1 @and P2 unwinded par/and
| P1 @or P2 unwinded par/or
| @canrun(n) can run on stack level n
| @nop terminated program

The mem(id) primitive represents a read or write to the
memory location identified by id .3 Following the synchro-
nous hypothesis, mem statements and expressions are consid-
ered to be atomic and instantaneous.
Most statements in the abstract language are mapped to

their counterparts in the concrete language. The exceptions
are the finalization block finp and the @-statements which
do not exist in the concrete language. These result from the
expansion of the transition rules to be presented.

A further difference between the concrete and abstract lan-
guages regards the emit-await pair. In the concrete language,
the await can be used as an expression which evaluates to
the value stored in the corresponding emitted event, e.g.,
an łemit a(10)ž awakes a łv=await až setting variable v to 10.
Although the abstract awaitint and emitint do not support
such communication of values, it can be easily simulated:
one can use a shared variable to hold the value of an emitint
and access it after the corresponding awaitint awakes.
Finally, a łfinalize A with B end; Cž in the concrete lan-

guage is equivalent to łA; ((finB) or C)ž in the abstract
language. In the concrete language, A and C execute in se-
quence, and the finalization code B is implicitly suspended
waiting for C to terminate. In the abstract language, łfinBž
suspends forever when reached (it is an awaiting statement
that never awakes). Hence, we need an explicit or to exe-
cute C in parallel, whose termination aborts łfinBž, which
finally causes B to execute (by the semantic rules below).

3Although the same symbol id is used in their definition, mem, awaitext ,
awaitint and emitint do not share identifiers: any identifier is either a
variable, an external event, or an internal event.
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3.2 Operational Semantics

The operational semantics is a mathematical model that de-

scribes how an abstract Céu programs reacts to a single

external input event, i.e., how starting from this input event
the program advances its state until all its trails are blocked
waiting for a another input event. The formalism we use here
is that of small-step operational semantics [15] in which the
meaning of programs is defined in terms of transitions of an
abstract machine. Each transition transforms a triple consist-
ing of a program p, a stack level n, and an emitted event e
into a possibly different triple, i.e.,

⟨p,n, e⟩ −→ ⟨p ′,n′, e ′⟩ ,

where p,p ′ ∈ P are abstract-language programs, n,n′ ∈ N

are non-negative integers representing the current stack
level, and e, e ′ ∈ E ∪ {ε} are the events emitted before and
after the transition (both possibly being the empty event ε).
We refer to the triples on the left-hand and right-hand

sides of symbol −→ as descriptions (denoted δ ). The descrip-
tion on the left of −→ is called the input description, the one
on its right is called the output description.
At the beginning of a reaction to an input event id , the

input description is initialized with stack level 0 (n = 0) and
with the externally emitted event e = id. At the end of a
reaction, after an arbitrary but finite number of transitions,
the last output descriptionwill blockwith a possiblymodified
program p ′ at stack level 0 and no event emitted4:

⟨p, 0, e⟩ −→
∗

⟨p ′, 0, ε⟩ .

We now proceed to give the rules for possible the tran-
sitions. We distinguish between two types of transitions:
outermost transitions −→out and nested transitions −→nst .

3.2.1 Outermost Transitions

The rulespush andpop for−→out transitions are non-recursive
definitions that apply to the program as a whole. These are
the only rules that manipulate the stack level.

e , ε

⟨p,n, e⟩ −→out ⟨bcast(p, e),n + 1, ε⟩
(push)

n > 0 p = @nop ∨ p = break ∨ isblocked(p,n)

⟨p,n, ε⟩ −→out ⟨p,n − 1, ε⟩
(pop)

Rule push can be applied whenever there is a nonempty
event in the input description, and instantly broadcasts the
event to the program, which means (i) awaking any ac-
tive awaitext or awaitint statements (see bcast in Figure 4),
(ii) creating a nested reaction by increasing the stack level,
and, at the same time, (iii) consuming the event (e becomes ε).
Rule push is the only rule that matches an emitted event
and also immediately consumes it.

4We write −→
i

to mean i transitions in sequence, and we write −→
∗

to mean
a finite (possibly zero) number of transitions in sequence.

Rule pop decreases the stack level by one and can only be
applied if the program is blocked (see isblocked in Figure 4)
or terminated (p = @nop or p = break). This condition en-
sures that an emitint only resumes after its internal reaction
completes and blocks in the current stack level.

At the beginning of a reaction, an external event is emitted,
which triggers rule push, immediately raising the stack level
to 1. At the end of the reaction, the program will block or
terminate and successive applications of rule pop will lead
to a description with this same program at stack level 0.

3.2.2 Nested Transitions

The −→nst rules are recursive definitions of the form

⟨p,n, ε⟩ −→nst ⟨p ′,n, e⟩.

Nested transitions do not affect the stack level and never
have an emitted event as a precondition. The distinction
between −→out and −→nst prevents rules push and pop from
matching and, consequently, from inadvertently modifying
the current stack level before the nested reaction is complete.

A complete reaction consists of a series of transitions

⟨p, 0, eext⟩ −→out
push

⟨p1, 1, ε⟩
[

−→nst
∗

−→out

]

∗ −→nst
∗

−→out
pop

⟨p ′, 0, ε⟩ ,

First, a −→out
push starts a nested reaction at level 1. Then, a series

of alternations between zero or more −→nst transitions (nested
reactions) and a single −→out transition (stack operation) takes
place. Finally, a last −→out

pop transition decrements the stack level
to 0 and terminates the reaction.
The −→nst rules for atoms are defined as follows:

⟨mem(id),n, ε⟩ −→nst ⟨@nop,n, ε⟩ (mem)

⟨emitint(id),n, ε⟩ −→nst ⟨@canrun(n),n, id⟩ (emit-int)

⟨@canrun(n),n, ε⟩ −→nst ⟨@nop,n, ε⟩ (can-run)

A mem operation becomes a @nopwhich indicates the mem-
ory access (rulemem). An emitint(id) generates an event id
and becomes a @canrun(n) which can only resume at level n
(rule emit-int). Since all −→nst rules can only be applied if
e = ε , an emitint inevitably causes rule push to execute
at the outer level, creating a new level n + 1 on the stack.
Also, with the new stack level, the resulting @canrun(n) itself
cannot transition yet (rule can-run), providing the desired
stack-based semantics for internal events.

The rules for conditionals and sequences are the following:

eval(mem(id))

⟨if mem(id) thenp elseq,n, ε⟩ −→nst ⟨p,n, ε⟩
(if-true)

¬ eval(mem(id))

⟨if mem(id) thenp elseq,n, ε⟩ −→nst ⟨q,n, ε⟩
(if-false)

⟨p,n, ε⟩ −→nst ⟨p ′,n, e⟩

⟨p ; q,n, ε⟩ −→nst ⟨p ′; q,n, e⟩
(seq-adv)

⟨@nop; q,n, ε⟩ −→nst ⟨q,n, ε⟩ (seq-nop)

⟨break; q,n, ε⟩ −→nst ⟨break,n, ε⟩ (seq-brk)
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Rules if-true and if-false are the only rules that use mem
in a way that affects the control flow. Function eval evaluates
a mem expression to a boolean value.

The rules for loops are similar to those for sequences, but
use ł@ž as separators to bind breaks to their enclosing loops:

⟨loopp,n, ε⟩ −→nst ⟨p @loopp,n, ε⟩ (loop-expd)

⟨q,n, ε⟩ −→nst ⟨q′,n, e⟩

⟨q @loopp,n, ε⟩ −→nst ⟨q′ @loopp,n, e⟩
(loop-adv)

⟨@nop @loopp,n, ε⟩ −→nst ⟨loopp,n, ε⟩ (loop-nop)

⟨break @loopp,n, ε⟩ −→nst ⟨@nop,n, ε⟩ (loop-brk)

When a program encounters a loop, it first expands its
body in sequence with itself (rule loop-expd). Rules loop-
adv and loop-nop are similar to rules seq-adv and seq-nop,
advancing the loop until a @nop is reached. However, what
follows the loop is the loop itself (rule loop-nop). Note that if
we used ł;ž as a separator in loops, rules loop-brk and seq-
brk would conflict. Rule loop-brk escapes the enclosing
loop, transforming everything into a @nop.
The rules for and and or compositions ensure that their

left branch always transition before their right branch:

⟨p and q,n, ε⟩ −→nst ⟨p @and (@canrun(n);q),n, ε⟩ (and-expd)

⟨p,n, ε⟩ −→nst ⟨p ′,n, e⟩

⟨p @and q,n, ε⟩ −→nst ⟨p ′ @and q,n, e⟩
(and-adv1)

isblocked(p,n) ⟨q,n, ε⟩ −→nst ⟨q′,n, e⟩

⟨p @and q,n, ε⟩ −→nst ⟨p @and q′,n, e⟩
(and-adv2)

⟨p or q,n, ε⟩ −→nst ⟨p @or (@canrun(n);q),n, ε⟩ (or-expd)

⟨p,n, ε⟩ −→nst ⟨p ′,n, e⟩

⟨p @or q,n, ε⟩ −→nst ⟨p ′ @or q,n, e⟩
(or-adv1)

isblocked(p,n) ⟨q,n, ε⟩ −→nst ⟨q′,n, e⟩

⟨p @or q,n, ε⟩ −→nst ⟨p @or q′,n, e⟩
(or-adv2)

Rules and-expd and or-expd insert a @canrun(n) at the
beginning of the right branch. This ensures that any emitint
on the left branch, which eventually becomes a @canrun(n),
resumes before the right branch starts. The deterministic
behavior of the semantics relies on the isblocked predicate
(see Figure 4) which is used in rules and-adv2 and or-adv2.
These rules require the left branch p to be blocked for the
right branch to transition from q to q′.
In a parallel @and, if one branch terminates, the compo-

sition becomes the other branch (rules and-nop1 and and-

nop2 below). In a parallel @or, however, if one branch termi-
nates, the whole composition terminates and clear is called
to finalize the aborted branch (rules or-nop1 and or-nop2).

⟨@nop @and q,n, ε⟩ −→nst ⟨q,n, ε⟩ (and-nop1)

isblocked(p,n)

⟨p @and @nop,n, ε⟩ −→nst ⟨p,n, ε⟩
(and-nop2)

⟨@nop @or q,n, ε⟩ −→nst ⟨clear(q),n, ε⟩ (or-nop1)

isblocked(p,n)

⟨p @or @nop,n, ε⟩ −→nst ⟨clear(p),n, ε⟩
(or-nop2)

The clear function (see Figure 4) concatenates all active fin
bodies of the branch being aborted, so that they execute be-
fore the composition rejoins.
As there are no transition rules for fin statements, once

reached, a fin halts and will only be consumed if its trail
is aborted. At this point, its body will execute as a result of
the clear call. The body of a fin statement always execute
within a reaction. This is due to a syntactic restriction: fin
bodies cannot contain awaiting statements (namely, awaitext ,
awaitint , every, or fin).
Finally, a break in one branch of a parallel escapes the

closest enclosing loop, properly aborting the other branch
with the clear function:

⟨break @and q,n, ε⟩ −→nst ⟨clear(q); break,n, ε⟩ (and-brk1)

isblocked(p,n)

⟨p @and break,n, ε⟩ −→nst ⟨clear(p); break,n, ε⟩
(and-brk2)

⟨break @or q,n, ε⟩ −→nst ⟨clear(q); break,n, ε⟩ (or-brk1)

isblocked(p,n)

⟨p @or break,n, ε⟩ −→nst ⟨clear(p); break,n, ε⟩
(or-brk2)

A reaction eventually blocks in awaitext , awaitint , every,
fin, and @canrun statements in parallel trails. Then, if none
of the trails is blocked in @canrun, it means that the program
cannot advance in the current reaction. However, @canrun
statements can still resume at lower stack indexes and will
eventually resume in the current reaction (see rule pop).

3.3 Properties

3.3.1 Determinism

Transitions −→out and −→nst are defined in such a way that given
an input description either no rule is applicable or exactly
one of them can be applied (no choice involved). This coupled
with the fact that the output of every rule is a function of
its input implies that transitions are deterministic: the same
input description, if it can transition, will always result in
the same output description. Thus the transition relation −→
is in fact a partial function.

The next two lemmas establish the determinism of a single
application of −→out and −→nst . Lemma 3.1 follows from a simple
inspection of rules push and pop. The proof of Lemma 3.2
follows by induction on the structure of the derivation trees
produced by the rules for −→nst . Both lemmas are used in the
proof of the Theorem 3.3.
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(i) Function bcast:

bcast(awaitext (e), e) = @nop

bcast(awaitint (e), e) = @nop

bcast(every e p, e) = p; every e p

bcast(@canrun(n), e) = @canrun(n)

bcast(finp, e) = finp

bcast(p; q, e) = bcast(p, e); q

bcast(p @loopq, e) = bcast(p, e) @loopq

bcast(p @and q, e) = bcast(p, e) @and bcast(q, e)

bcast(p @or q, e) = bcast(p, e) @or bcast(q, e)

bcast(_, e) = _ (mem, emitint , break,

if then else , loop, and, or, @nop)

(ii) Predicate isblocked:

isblocked(awaitext (e),n) = true

isblocked(awaitint (e),n) = true

isblocked(every e p,n) = true

isblocked(@canrun(m),n) = (n > m)

isblocked(finp,n) = true

isblocked(p; q,n) = isblocked(p,n)

isblocked(p @loopq,n) = isblocked(p,n)

isblocked(p @and q,n) = isblocked(p,n) ∧ isblocked(q,n)

isblocked(p @or q,n) = isblocked(p,n) ∧ isblocked(q,n)

isblocked(_,n) = false (mem, emitint , break,

if then else , loop, and, or, @nop)

(iii) Function clear :

clear(awaitext (e)) = @nop

clear(awaitint (e)) = @nop

clear(every e p) = @nop

clear(@canrun(n)) = @nop

clear(finp) = p

clear(p; q) = clear(p)

clear(p @loopq) = clear(p)

clear(p @and q) = clear(p); clear(q)

clear(p @or q) = clear(p); clear(q)

clear(_) = ξ (mem, emitint , break,

if then else , loop, and, or, @nop)

Figure 4. (i) Function bcast awakes awaiting trails matching
the event by converting awaitext and awaitint to @nop, and
by unwinding every statements. (ii) Predicate isblocked is
true only if all branches in parallel are blocked waiting for
events, finalization clauses, or certain stack levels. (iii) Func-
tion clear extracts fin statements in parallel and put their
bodies in sequence. In (i), (ii), and (iii), ł_ž denotes the omit-
ted cases and łξ ž denotes the empty string.

Lemma 3.1. If δ −→out δ1 and δ −→out δ2 then δ1 = δ2.

Lemma 3.2. If δ −→nst δ1 and δ −→nst δ2 then δ1 = δ2.

The main result of this section, Theorem 3.3, establishes
that any given number i ≥ 0 of applications of arbitrary tran-
sition rules, starting from the same input description, will
always lead to the same output description. In other words,
any finite sequence of transitions behave deterministically.

Theorem 3.3 (Determinism). δ −→
i

δ1 and δ −→
i

δ2 im-
plies δ1 = δ2.

Proof. By induction on i . The theorem is trivially true if i =
0 and follows directly from the previous lemmas if i = 1.
Suppose

δ −→
1

δ ′
1 −→

i−1
δ1 and δ −→

1
δ ′
2 −→

i−1
δ2 ,

for some i > 1, δ ′
1 and δ

′
2. Then, by Lemma 3.1 or 3.2, depend-

ing on whether the first transition is −→out or −→nst (it cannot be
both), δ ′

1 = δ ′
2, and by the induction hypothesis, δ1 = δ2. □

3.3.2 Termination

We now turn to the problem of termination.Wewant to show
that any sufficiently long sequence of applications of arbi-
trary transition rules will eventually lead to an irreducible
description, i.e., one that cannot be modified by further tran-
sitions. Before doing that, however, we need to introduce
some notation and establish some basic properties of the
transition relations −→nst and −→out .

Definition 3.4. A description δ = ⟨p,n, e⟩ is nested-irre-
ducible iff e , ε or p = @nop or p = break or isblocked(p,n).5

Nested-irreducible descriptions serve as normal forms
for −→nst transitions: they embody the result of an exhaustive
number of −→nst applications. We will write δ#nst to indicate
that description δ is nested-irreducible.

The use of qualifier łirreduciblež in Definition 3.4 is justi-
fied by Proposition 3.5, which states that if a finite number
of applications of −→nst results in an irreducible description,
then that occurs exactly once, at some specific number i .
The proof of Proposition 3.5 follows directly from the defini-
tion of −→nst by contradiction on the hypothesis that there is
such k , i .

Proposition 3.5. If δ −→nst
i

δ ′
#nst then, for all k , i , there is

no δ ′′
#nst such that δ −→nst

k
δ ′′
#nst .

The next lemma establishes that sequences of −→nst transi-
tions behave as expected regarding the order of evaluation
of composition branches. Its proof follows by induction on i .

Lemma 3.6.

If ⟨p1,n, e⟩ −→nst
i

⟨p ′1,n, e
′⟩, for any p2:

(a) ⟨p1; p2,n, e⟩ −→nst
i

⟨p ′1;p2,n, e
′⟩.

(b) ⟨p1 @loopp2,n, e⟩ −→nst
i

⟨p ′1 @loopp2,n, e
′⟩.

(c) ⟨p1 @and p2,n, e⟩ −→nst
i

⟨p ′1 @and p2,n, e
′⟩.

(d) ⟨p1 @or p2,n, e⟩ −→nst
i

⟨p1
′ @or p2,n, e

′⟩.

If ⟨p2,n, e⟩−→nst
i

⟨p ′2,n, e
′⟩, for any p1 such that isblocked(p1,n):

(a) ⟨p1 @and p2,n, e⟩ −→nst
i

⟨p1 @and p
′
2,n, e

′⟩.

(b) ⟨p1 @or p2,n, e⟩ −→nst
i

⟨p1 @or p
′
2,n, e

′⟩.

5We sometimes abbreviate łp = @nop or p = breakž as łp = @nop, breakž.
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The syntactic restriction discussed in Section 2.1 regarding
the body of loops and the restrictionmentioned in Section 3.2
about the body of fin statements are formalized in Assump-
tion 3.7 below. These restrictions are essential to prove the
next theorem.

Assumption 3.7 (Syntactic restrictions).

(a) If p = finp1 then p1 contains no occurrences of state-
ments awaitext , awaitint , every, or fin. And so, for
any n, ⟨clear(p1),n, ε⟩ −→nst

∗
⟨@nop,n, ε⟩.

(b) If p = loopp1 then all execution paths of p1 contain a
matching break or an awaitext . Consequently, for alln,
there arep ′1 and e such that ⟨loopp1,n, ε⟩−→nst

∗
⟨p ′1,n, e⟩,

where p ′1 = break @loopp1 or isblocked(p ′1,n) .

Theorem 3.8 establishes that a finite (possibly zero) num-
ber of−→nst transitions eventually leads to a nested-irreducible
description. Hence, for any input description δ , it is always
possible to transform δ in a nested-irreducible description δ ′

by applying to it a sufficiently long sequence of −→nst transi-
tions. The proof of the theorem follows by induction on the
structure of programs (members of set P ) and depends on
Lemma 3.6 and Assumption 3.7.

Theorem 3.8. For any δ there is a δ ′
#nst such that δ −→nst

∗
δ ′
#nst .

The main result of this section, Theorem 3.15, is similar to
Theorem 3.8 but applies to transitions −→ in general. Before
stating and proving it, we need to characterize irreducible
descriptions in general. This characterization, given in Defi-
nition 3.11, depends on the notions of potency and rank.

Definition 3.9. The potency of a program p in reaction to
event e , denoted pot(p, e), is the maximum number of emitint
statements that can be executed in a reaction of p to e , i.e.,

pot(p, e) = pot ′(bcast(p, e)) ,

where pot ′ is an auxiliary function that counts the maximum
number of reachable emitint statements in the program re-
sulting from the broadcast of event e to p.

Function pot ′ is defined by the following clauses:

(a) pot ′(emitint(e)) = 1.
(b) pot ′(if mem(id)thenp1elsep2)=max{pot ′(p1), pot

′(p2)}.
(c) pot ′(loopp1) = pot ′(p1).
(d) pot ′(p1 and p2) = pot ′(p1 or p2) = pot ′(p1) + pot

′(p2).
(e) If p1 , break, awaitext(e),

pot ′(p1; p2) = pot ′(p1) + pot
′(p2)

pot ′(p1 @loopp2) =

{

pot ′(p1) if (2)
pot ′(p1) + pot

′(p2) otherwise,

where (2) stands for: ła break or awaitext occurs in
all execution paths of p1ž.

(f) Ifp1,p2 , break, pot ′(p1 @and p2) = pot ′(p1)+pot
′(p2).

(g) If p1,p2 , break and p1,p2 , @nop,

pot ′(p1 @or p2) = pot ′(p1) + pot
′(p2) .

(h) Otherwise, if none of (a)ś(g) applies, pot ′(_) = 0.

Definition 3.10. The rank of a description δ = ⟨p,n, e⟩,
denoted rank(δ ), is a pair of nonnegative integers ⟨i, j⟩ such
that

i = pot(p, e) and j =

{

n if e = ε

n + 1 otherwise .

Intuitively, the rank of a description δ is a measure of the
maximum amount of łworkž (transitions) required to trans-
form δ into an irreducible description, in the following sense.

Definition 3.11. A description δ is irreducible (in symbols,
δ#) iff it is nested-irreducible and its rank(δ ) is ⟨i, 0⟩, for
some i ≥ 0.

An irreducible description δ# = ⟨p,n, e⟩ serves as a normal
form for transitions −→ in general. Such description cannot
be advanced by −→nst , as it is nested-irreducible, and neither

by −→out
push nor −→out

pop , as the second coordinate of its rank is 0,
which implies e = ε and n = 0.

The next two lemmas establish that a single application
of −→out or −→nst either preserves or decreases the rank of
the input description. All rank comparisons assume lexi-
cographic order, i.e., if rank(δ ) = ⟨i, j⟩ and rank(δ ′) = ⟨i ′, j ′⟩

then rank(δ ) > rank(δ ′) iff i > i ′ or i = i and j > j ′. The
proof of Lemma 3.12 follows directly from push and pop

and from Definitions 3.9 and 3.10. The proof of Lemma 3.13,
however, is by induction on the structure of −→nst derivations.

Lemma 3.12.

(a) If δ −→out
push

δ ′ then rank(δ ) = rank(δ ′).

(b) If δ −→out
pop

δ ′ then rank(δ ) > rank(δ ′).

Lemma 3.13. If δ −→nst δ ′ then rank(δ ) ≥ rank(δ ′).

The next theorem is a generalization of Lemma 3.13 for−→nst
∗ .

Its proof follows from the lemma by induction on i .

Theorem 3.14. If δ −→nst
∗

δ ′ then rank(δ ) ≥ rank(δ ′).

We now state and prove the main result of this section,
Theorem 3.15, the termination theorem for −→∗ . The idea of
the proof is that a sufficiently large sequence of −→nst and −→out
transitions eventually decreases the rank of the current de-
scription until an irreducible description is reached. This
irreducible description is the final result of the reaction.

Theorem 3.15 (Termination). For any δ , there is a δ ′
# such

that δ −→
∗

δ ′
#.

Proof. By lexicographic induction on rank(δ ). Letδ = ⟨p,n, e⟩

and rank(δ ) = ⟨i, j⟩.
For the basis, suppose ⟨i, j⟩ = ⟨0, 0⟩. Then δ cannot be ad-

vanced by −→out , as j = 0 implies e = ε and n = 0. If δ is nested-

irreducible, the theorem is trivially true, as δ −→nst
0

δ#nst and δ#.
If δ is not nested-irreducible then, by Theorem 3.8, δ−→nst

∗
δ ′
#nst ,

for some δ ′
#nst . By Theorem 3.14, rank(δ ) ≥ rank(δ ′), which

implies rank(δ ′) = ⟨0, 0⟩, and so δ ′
#.
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For the inductive step, suppose ⟨i, j⟩ > ⟨0, 0⟩. Then, de-
pending on whether or not δ is nested-irreducible, there are
two cases.

Case 1. δ is nested-irreducible. If j = 0, by Definition 3.11,
δ#, and so δ −→

0
δ#. If j > 0, there are two subcases:

Case 1.1. e , ε . Then, by push and by Theorem 3.8, there

are δ ′
1 and δ

′
#nst = ⟨p ′,n+ 1, e ′⟩ such that δ −→out

push
δ ′
1 −→nst

∗
δ ′
#nst .

Thus, by Lemma 3.12 and by Theorem 3.14,

rank(δ ) = rank(δ ′
1) = ⟨i, j⟩ ≥ rank(δ ′) = ⟨i ′, j ′⟩ .

If e ′ = ε , then i = i ′ and j = j ′, and the rest of this proof
is similar to that of Case 1.2.2 below. Otherwise, if e ′ , ε ,
then i > i ′, as an emitint(e

′) was consumed by the nested
transitions. Thus, rank(δ ) > rank(δ ′). By the induction
hypothesis, δ ′ −→

∗
δ ′′
# , for some δ ′′

# . Therefore, δ −→
∗

δ ′′
# .

Case 1.2. e = ε . Then, as j > 0, δ −→out
pop

δ ′, for some δ ′. By
Lemma 3.12, rank(δ ) > rank(δ ′). Hence, by the induction
hypothesis, δ ′ −→

∗
δ ′′
# , for some δ ′′

# . And so, δ −→
∗

δ ′′
# .

Case 2. δ is not nested-irreducible. Then e = ε and, by The-
orems 3.8 and 3.14, there is a δ ′

#nst such that δ −→nst
∗

δ ′
#nst

with rank(δ ) ≥ rank(δ ′
#nst). The rest of this proof is simi-

lar to that of Case 1 above. □

3.3.3 Memory Boundedness

As Céu has no mechanism for heap allocation, unbounded
iteration, or general recursion, the maximum memory usage
of a given Céu program is determined solely by the length
of its code, the number of variables it uses, and the size of
the event stack that it requires to run. The code length and
the number of variables used are easily determined by code
inspection. The maximum size of the event stack during
a reaction of program p to external event e corresponds
to pot(p, e), i.e., to the maximum number of internal events
that p may emit in reaction to e . If p may react to external
events e1, . . . , en then, in the worst case, its event stack will
need to store max{pot(p, e1), . . . , pot(p, en)} events.

4 Related Work

Céu follows the lineage of imperative synchronous languages
initiated by Esterel [8]. These languages typically define time
as a discrete sequence of logical łticksž in which multiple si-
multaneous input events can be active [17]. The presence of
multiple inputs requires careful static analysis to detect and
reject programs with causality cycles and schizophrenia prob-
lems [5]. In contrast, Céu defines time as a discrete sequence
of reactions to unique input events, which is a prerequisite
for the concurrency checks that enable safe shared-memory
concurrency, as discussed in Section 2.2.

In most synchronous languages, the behavior of external
and internal events is equivalent. However, in Céu, internal

events introduce stack-based micro reactions within exter-
nal reactions, providing more fine-grained control for intra-
reaction execution. This allows for memory-bounded sub-
routines that can execute multiple times during the same ex-
ternal reaction. The synchronous languages Statecharts [21]
and Statemate [11] also distinguish internal from external
events. Although the descriptions suggest a stack-based se-
mantics, we are not aware of formalizations or more preci-
sion for a deeper comparison with Céu.

Like Céu, many other synchronous languages [2, 7, 10, 12,
22] rely on lexical scheduling to preserve determinism. In
contrast, in Esterel, the execution order for operations within
a reaction is non-deterministic: łif there is no control depen-
dency, as in (call f1()||call f2()), the order is unspecified and
it would be an error to rely on itž [6]. For this reason, Esterel,
does not support shared-memory concurrency: łif a variable
is written by some thread, then it can neither be read nor be
written by concurrent threadsž [6]. Considering the constant
and low-level interactions with the underlying architecture
in embedded systems (e.g., direct port manipulation), we be-
lieve that it is advantageous to embrace lexical scheduling as
part of the language specification as a pragmatic design de-
cision to enforce determinism. However, since Céu statically
detects trails not sharing memory, an optimized scheduler
could exploit real parallelism in such cases.

Regarding the integration withC language-based environ-
ments, Céu supports a finalization mechanism for external
resources. In addition, Céu also tracks pointers representing
resources that crossC boundaries and forces the programmer
to provide associated finalizers. As far as we know, this extra
safety level is unique to Céu among synchronous languages.

5 Conclusion

The programming language Céu aims to offer a concurrent,
safe, and realistic alternative to C for embedded soft real-time
systems, such as sensor networks and multimedia systems.
Céu inherits the synchronous and imperative mindset of
Esterel but adopts a simpler semantics with fine-grained exe-
cution control, which makes the language fully deterministic.
In addition, its stack-based execution for internal events pro-
vides a limited but memory-bounded form of subroutines.
Céu also provides a finalization mechanism for resources
when interacting with the external environment.

In this paper, we proposed a small-step operational seman-
tics for Céu and proved that under it reactions are determin-
istic, terminate in finite time, and use bounded memory, i.e.,
that for a given arbitrary timeline of input events, multiple
executions of the same program always react in bounded
time and arrive at the same final finite memory state.

A Detailed Proofs

Lemma 3.1. If δ −→out δ1 and δ −→out δ2 then δ1 = δ2.

10
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Proof. The lemma is vacuously true if δ cannot be advanced
by −→out transitions. Suppose that is not the case and let δ =
⟨p,n, e⟩, δ1 = ⟨p1,n1, e1⟩ and δ2 = ⟨p2,n2, e2⟩. Then, there
are two possibilities.

Case 1. e , ε . Both transitions are applications of push.
Hence p1 = p2 = bcast(p, e), n1 = n2 = n + 1, and e1 = e2 = ε .

Case 2. e = ε . Both transitions are applications ofpop. Hence
p1 = p2 = p, n1 = n2 = n − 1, and e1 = e2 = ε . □

Lemma 3.2. If δ −→nst δ1 and δ −→nst δ2 then δ1 = δ2.

Proof. By induction on the structure of −→nst derivations. The
lemma is vacuously true if δ cannot be advanced by −→nst
transitions. Suppose that is not the case and let δ = ⟨p,n, e⟩,
δ1 = ⟨p1,n1, e1⟩ and δ2 = ⟨p2,n2, e2⟩. Then, by the hypothesis
of the lemma, there are derivations π1 and π2 such that

π1 ⊩ ⟨p,n, e⟩ −→nst ⟨p1,n1, e1⟩

π2 ⊩ ⟨p,n, e⟩ −→nst ⟨p2,n2, e2⟩

i.e., the conclusion of π1 is ⟨p,n, e⟩ −→nst ⟨p1,n1, e1⟩ and the
conclusion of π2 is ⟨p,n, e⟩ −→nst ⟨p2,n2, e2⟩.
By definition of −→nst , we have that e = ε and n1 = n2 = n.

It remains to be shown that p1 = p2 and e1 = e2.
Depending on the structure of program p, the follow-

ing 11 cases are possible. (Note that p cannot be an awaitext ,
awaitint , break, every, fin, or @nop statement as there is
no −→nst rule to transition such programs.)

Case 1. p = mem(id). Then derivations π1 and π2 are in-
stances of rule mem, i.e., their conclusions are obtained by
an application of this rule. Hence p1 = p2 = @nop and e1 =
e2 = ε .

Case 2. p = emitint(e
′). Thenπ1 andπ2 are instances of emit-

int. Hence p1 = p2 = @canrun(n) and e1 = e2 = e ′.

Case 3. p = @canrun(n). Then π1 and π2 are instances of can-
run. Hence p1 = p2 = @nop and e1 = e2 = ε .

Case 4. p = if mem(id) thenp ′ elsep ′′. There are two sub-
cases.
Case 4.1. eval(mem(id)). Then π1 and π2 are instances of if-
true. Hence p1 = p2 = p ′ and e1 = e2 = ε .

Case 4.2. ¬ eval(mem(id)). Then π1 and π2 are instances
of if-false. Hence p1 = p2 = p ′′ and e1 = e2 = ε .

Case 5. p = p ′; p ′′. There are three subcases.
Case 5.1. p ′ = @nop. Then π1 and π2 are instances of seq-
nop. Hence p1 = p2 = p ′′ and e1 = e2 = ε .

Case 5.2. p ′ = break. Then π1 and π2 are instances of seq-
brk. Hence p1 = p2 = break and e1 = e2 = ε .

Case 5.3. p ′ , @nop, break. Then π1 and π2 are instances
of seq-adv. Thus there are derivations π ′

1 and π
′
2 such that

π ′
1 ⊩ ⟨p ′,n, ε⟩ −→nst ⟨p ′1,n, e

′
1⟩

π ′
2 ⊩ ⟨p ′,n, ε⟩ −→nst ⟨p ′2,n, e

′
2⟩

for some p ′1, p
′
2, e

′
1, and e ′2. By the induction hypothesis,

p ′1 = p ′2 and e ′1 = e ′2. Hence p1 = p ′1;p
′′
= p ′2;p

′′
= p2

and e1 = e ′1 = e ′2 = e2.

Case 6. p = loopp ′. Then π1 and π2 are instances of loop-
expd. Hence p1 = p2 = p ′ @loopp ′ and e1 = e2 = ε .

Case 7. p = p ′ @loopp ′′. There are three subcases.
Case 7.1. p ′ = @nop. Then π1 and π2 are instances of loop-
nop. Hence p1 = p2 = loopp ′′ and e1 = e2 = ε .

Case 7.2. p ′ = break. Thenπ1 andπ2 are instances of loop-
brk. Hence p1 = p2 = @nop and e1 = e2 = ε .

Case 7.3. p ′ , @nop, break. Then π1 and π2 are instances
of loop-adv. Thus there are derivations π ′

1 and π ′
2 such

that

π ′
1 ⊩ ⟨p ′,n, ε⟩ −→nst ⟨p ′1,n, e

′
1⟩

π ′
2 ⊩ ⟨p ′,n, ε⟩ −→nst ⟨p ′2,n, e

′
2⟩

for some p ′1, p
′
2, e

′
1, and e ′2. By the induction hypothe-

sis, p ′1 = p ′2 and e ′1 = e ′2. Hence p1 = p ′1 @loopp
′′
=

p ′2 @loopp
′′
= p2 and e1 = e ′1 = e ′2 = e2.

Case 8. p = p ′ and p ′′. Then π1 and π2 are instances of and-
expd. Hence p1 = p2 = p ′ @and (@canrun(n); p ′′) and e1 =

e2 = ε .

Case 9. p = p ′ @and p ′′. There are two subcases.
Case 9.1. ¬ isblocked(p ′,n). There are three subcases.
Case 9.1.1. p ′ = @nop. Then π1 and π2 are instances
of and-nop1. Hence p1 = p2 = p ′′ and e1 = e2 = ε .

Case 9.1.2. p ′ = break. Then π1 and π2 are instances
of and-brk1. Hencep1 = p2 = clear(p ′′); break and e1 =
e2 = ε .

Case 9.1.3. p ′ , @nop, break. Then π1 and π2 are in-
stances of and-adv1. Thus there are derivations π ′

1

and π ′
2 such that

π ′
1 ⊩ ⟨p ′,n, ε⟩ −→nst ⟨p ′1,n, e

′
1⟩

π ′
2 ⊩ ⟨p ′,n, ε⟩ −→nst ⟨p ′2,n, e

′
2⟩

for some p ′1, p
′
2, e

′
1, e

′
2. By the induction hypothesis, p ′1 =

p ′2 and e
′
1 = e ′2. Hence p1 = p

′
1 and p

′′
= p ′2 and p

′′
= p2

and e1 = e ′1 = e ′2 = e2.

Case 9.2. isblocked(p ′,n). There are three subcases.
Case 9.2.1. p ′′ = @nop. Then π1 and π2 are instances
of and-nop2. Hence p1 = p2 = p ′ and e1 = e2 = ε .

Case 9.2.2. p ′′ = break. Then π1 and π2 are instances
of and-brk2. Hencep1 = p2 = clear(p ′); break and e1 =
e2 = ε .

Case 9.2.3. p ′′ , @nop, break. Then π1 and π2 are in-
stances of and-adv2. Thus there are derivations π ′′

1

and π ′′
2 such that

π ′′
1 ⊩ ⟨p ′′,n, ε⟩ −→nst ⟨p ′′1 ,n, e

′′
1 ⟩

π ′′
2 ⊩ ⟨p ′′,n, ε⟩ −→nst ⟨p ′′2 ,n, e

′′
2 ⟩

11
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for some p ′′1 , p
′′
2 , e

′′
1 , and e

′′
2 . By the induction hypoth-

esis, p ′′1 = p ′′2 and e ′′1 = e ′′2 . Hence p1 = p ′ and p ′′1 =

p ′ and p ′′2 = p2 and e1 = e ′′1 = e ′′2 = e2.

Case 10. p = p ′ or p ′′. Then π1 and π2 are instances of or-
expd. Hence p1 = p2 = p ′ @or (@canrun(n); p ′′) and e1 =

e2 = ε .

Case 11. p = p ′ @or p ′′. There are two subcases.
Case 11.1. ¬ isblocked(p ′,n). There are three subcases.
Case 11.1.1. p ′ = @nop. Then π1 and π2 are instances
of or-nop1. Hence p1 = p2 = clear(p ′′) and e1 = e2 = ε .

Case 11.1.2. p ′ = break. Similar to Case 9.1.2.

Case 11.1.3. p ′ , @nop, break. Similar to Case 9.1.3.

Case 11.2. isblocked(p ′,n). There are three subcases.
Case 11.2.1. p ′′ = @nop. Then π1 and π2 are instances
of or-nop1. Hence p1 = p2 = clear(p ′) and e1 = e2 = ε .

Case 11.2.2. p ′′ = break. Similar to Case 9.2.2.

Case 11.2.3. p ′′ , @nop, break. Similar to Case 9.2.3.

□

Theorem 3.3 (Determinism). δ −→
i

δ1 and δ −→
i

δ2 im-
plies δ1 = δ2.

Proof. By induction on i . The theorem is trivially true if i = 0

and follows directly from Lemmas 3.1 and 3.2 for i = 1.
Suppose

δ −→
1

δ ′
1 −→

i−1
δ1 and δ −→

1
δ ′
2 −→

i−1
δ2 ,

for some i > 1, δ ′
1 and δ

′
2. There are two possibilities.

Case 1. δ −→out
1

δ ′
1 and δ −→out

1
δ ′
2. Then, by Lemma 3.1, δ ′

1 = δ ′
2,

and by the induction hypothesis, δ1 = δ2.

Case 2. δ −→nst
1

δ ′
1 and δ −→nst

1
δ ′
2. Then, by Lemma 3.2, δ ′

1 = δ ′
2,

and by the induction hypothesis, δ1 = δ2. □

Proposition 3.5. If δ −→nst
i

δ ′
#nst then, for all k , i , there is

no δ ′′
#nst such that δ −→nst

k
δ ′′
#nst .

Proof. By contradiction on the hypothesis that there is suchk .
Let δ −→nst

i
δ ′
#nst , for some i ≥ 0. There are two cases.

Case 1. Suppose there are k > i and δ ′′
#nst such that δ −→nst

k
δ ′′.

Then, by definition of −→nst
k ,

δ −→nst
i

δ ′ −→nst
i+1

δ ′
1 −→nst

i+2
· · · −→nst

k
δ ′′
. (1)

Since δ ′
= ⟨p ′,n, e ′⟩ is nested-irreducible, e ′ = ε or p =

@nop, break or isblocked(p ′,n). In any of these cases, by the
definition of −→nst , there is no δ ′

1 such that δ ′ −→nst
1

δ ′
1, which

contradicts (1). Therefore, no such k can exist.

Case 2. Suppose there are k < i and δ ′′
#nst such that δ −→nst

k
δ ′′.

Then, since i > k , by Case 1, δ ′ cannot exist, which is absurd.
Therefore, the assumption that there is such k is false. □

Lemma 3.6.

If ⟨p1,n, e⟩ −→nst
i

⟨p ′1,n, e
′⟩, for any p2:

(a) ⟨p1; p2,n, e⟩ −→nst
i

⟨p ′1;p2,n, e
′⟩.

(b) ⟨p1 @loopp2,n, e⟩ −→nst
i

⟨p ′1 @loopp2,n, e
′⟩.

(c) ⟨p1 @and p2,n, e⟩ −→nst
i

⟨p ′1 @and p2,n, e
′⟩.

(d) ⟨p1 @or p2,n, e⟩ −→nst
i

⟨p1
′ @or p2,n, e

′⟩.

If ⟨p2,n, e⟩−→nst
i

⟨p ′2,n, e
′⟩, for any p1 such that isblocked(p1,n):

(a) ⟨p1 @and p2,n, e⟩ −→nst
i

⟨p1 @and p
′
2,n, e

′⟩.

(b) ⟨p1 @or p2,n, e⟩ −→nst
i

⟨p1 @or p
′
2,n, e

′⟩.

Proof. By induction on i .

(a) The lemma is trivially true for i = 0, as p1 = p ′1, and
follows directly from seq-adv for i = 1. Suppose

⟨p1,n, e⟩ −→nst
1

⟨p ′′1 ,n, e
′′⟩ −→nst

i−1
⟨p ′1,n, e

′⟩ , (2)

for some i > 1. Then ⟨p ′′1 ,n, e
′′⟩ is not nested-irreducible,

i.e., e = ε and p , @nop, break and ¬ isblocked(p ′′1 ,n).
By (2) and by seq-adv,

⟨p1; p2,n, e⟩ −→nst
1

⟨p ′′1 ; p2,n, e
′′⟩ . (3)

From (2), by the induction hypothesis,

⟨p ′′1 ; p2,n, e
′′⟩ −→nst

i−1
⟨p ′1; p2,n, e

′⟩ . (4)

From (3) and (4),

⟨p1; p2,n, e⟩ −→nst
i

⟨p ′1; p2,n, e
′⟩ .

(b) Similar to item (a).
(c) Similar to item (a).
(d) Similar to item (a).
(e) The lemma is trivially true for i = 0, as p2 = p ′2, and

follows directly from and-adv2 for i = 1. Suppose

⟨p2,n, e⟩ −→nst
1

⟨p ′′2 ,n, e
′′⟩ −→nst

i−1
⟨p ′2,n, e

′⟩ , (5)

for some i > 1. Then ⟨p ′′2 ,n, e
′′⟩ is not nested-irreducible.

By (5) and by and-adv2,

⟨p1 @and p2,n, e⟩ −→nst
1

⟨p1 @and p
′′
2 ,n, e

′′⟩ . (6)

From (5), by the induction hypothesis,

⟨p1 @and p
′′
2 ,n, e

′′⟩ −→nst
i−1

⟨p1 @or p
′
2,n, e

′⟩ . (7)

From (6) and (7),

⟨p1 @and p2,n, e⟩ −→nst
i

⟨p1 @and p
′
2,n, e

′⟩ .

(f) Similar to item (a). □

Theorem 3.8. For any δ there is a δ ′
#nst such that δ −→nst

∗
δ ′
#nst .

Proof. By induction on the structure of programs. Let δ =
⟨p,n, ε⟩. The theorem is trivially true ifδ is nested-irreducible,
as by definition δ −→nst

0
δ . Suppose that is not the case. Then,

depending on the structure of p, there are 11 possibilities. In
each one of them, we show that such δ ′

#nst indeed exists.

Case 1. p = mem(id). Then, bymem,

⟨mem(id),n, ε⟩ −→nst
1

⟨@nop,n, ε⟩#nst .

Case 2. p = emitint(e). Then, by emit-int,

⟨emitint(e),n, ε⟩ −→nst
1

⟨@canrun(n),n, e⟩#nst .

12
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Case 3. p = @canrun(n). Then, by can-run,

⟨@canrun(n),n, ε⟩ −→nst
1

⟨@nop,n, ε⟩#nst .

Case 4. p = if mem(id) thenp ′ elsep ′′. There are two sub-
cases.
Case 4.1. eval(mem(id)). Then, by if-true and by the in-
duction hypothesis, there is a δ ′ such that

⟨if mem(id) thenp ′ elsep ′′,n, ε⟩ −→nst
1

⟨p ′,n, e⟩

−→nst
∗

δ ′
#nst .

Case 4.2. ¬ eval(mem(id)). Similar to Case 4.1.

Case 5. p = p ′; p ′′. There are three subcases.
Case 5.1. p ′ = @nop. Then, by seq-nop and by the induc-
tion hypothesis, there is a δ ′ such that

⟨@nop; p ′′,n, ε⟩ −→nst
1

⟨p ′′,n, e⟩ −→nst
∗

δ ′
#nst .

Case 5.2. p ′ = break. Then, by seq-brk,

⟨break; p ′′,n, ε⟩ −→nst
1

⟨break,n, ε⟩#nst .

Case 5.3. p ′ , @nop, break. Then, by the induction hy-
pothesis, there are p ′1 and e such that

⟨p ′,n, ε⟩ −→nst
∗

⟨p ′1,n, e⟩#nst .

By item (a) of Lemma 3.6,

⟨p ′; p ′′,n, ε⟩ −→nst
∗

⟨p ′1; p
′′
,n, e⟩ . (8)

It remains to be shown that ⟨p ′1; p
′′
,n, e⟩ is nested-irreducible.

There are four possibilities following from the fact that
the simpler ⟨p ′1,n, e⟩ is nested-irreducible.
Case 5.3.1. e , ε . Then, by the definition of #nst, de-
scription ⟨p ′1; p

′′
,n, e⟩ is nested-irreducible.

Case 5.3.2. p ′1 = @nop. From (8),

⟨p ′; p ′′,n, ε⟩ −→nst
∗

⟨@nop; p ′′,n, e⟩ .

From this point on, this case is similar to Case 5.1.

Case 5.3.3. p ′1 = break. From (8),

⟨p ′; p ′′,n, ε⟩ −→nst
∗

⟨break; p ′′,n, e⟩ .

From this point on, this case is similar to Case 5.2.

Case 5.3.4. isblocked(p ′1,n). Then, by definition,

isblocked(p ′1;p
′′
,n) = isblocked(p ′1,n) = true .

Hence from (8) and by the definition #nst, description ⟨p ′1; p
′′
,n, e⟩

is nested-irreducible.

Case 6. p = loopp ′. Then, by item (b) of Assumption 3.7,

⟨loopp ′,n, ε⟩ −→nst
∗

⟨p ′1,n, e⟩ , (9)

for some e and p ′1 such that either p ′1 = break @loopp ′

or isblocked(p ′1,n).
Case 6.1. p ′1 = break @loopp ′. From (9), by loop-brk,

⟨loopp ′,n, ε⟩ −→nst
∗

⟨break @loopp ′,n, e⟩

−→nst
1

⟨@nop,n, e⟩#nst .

Case 6.2. isblocked(p ′1,n). Hence from (9) and by the defi-
nition of #nst, ⟨p ′1,n, e⟩#nst .

Case 7. p = p ′ @loopp ′′. There are three subcases.
Case 7.1. p ′ = @nop. Then, by loop-nop,

⟨@nop @loopp ′′,n, ε⟩ −→nst
1

⟨loopp ′′,n, ε⟩ .

From this point on, this case is similar to Case 6.

Case 7.2. p ′ = break. Then, by loop-brk,

⟨break @loopp ′′,n, ε⟩ −→nst
1

⟨@nop,n, ε⟩#nst .

Case 7.3. p ′ , @nop, break. Then, by the induction hy-
pothesis, there are p ′1 and e such that

⟨p ′,n, ε⟩ −→nst
∗

⟨p ′1,n, e⟩#nst .

By item (b) of Lemma 3.6,

⟨p ′ @loopp ′′,n, ε⟩ −→nst
∗

⟨p ′1 @loopp
′′
,n, e⟩ .

It remains to be show that ⟨p ′1 @loopp
′′
,n, e⟩ is nested-

irreducible. The rest of this proof is similar to that of
Case 5.3.

Case 8. p = p ′ and p ′′. Then, by and-expd,

⟨p ′ and p ′′,n, ε⟩ −→nst
1

⟨p ′ @and (@canrun(n); p ′′),n, ε⟩ .

From this point on, this case is similar to Case 9.

Case 9. p = p ′ @and p ′′. There are two subcases.
Case 9.1. ¬ isblocked(p ′,n). There are three subcases.

Case 9.1.1. p ′ = @nop. Then, by and-nop1 and by the
induction hypothesis, there is a δ ′ such that

⟨@nop @and p ′′,n, ε⟩ −→nst
1

⟨p ′′,n, ε⟩ −→nst
∗

δ ′
#nst .

Case 9.1.2. p ′ = break. Then, by and-brk1,

⟨break @and p ′′,n, ε⟩ (10)

−→nst
1

⟨clear(p ′′); break,n, ε⟩ .

From (10), by item (a) of Assumption 3.7 and by seq-

nop,

⟨clear(p ′′); break,n, ε⟩ −→nst
∗

⟨@nop; break,n, ε⟩

−→nst
1

⟨break,n, ε⟩#nst .

Case 9.1.3. p ′ , @nop, break. Then, by the induction
hypothesis, there are p ′1 and e such that

⟨p ′,n, ε⟩ −→nst
∗

⟨p ′1,n, e⟩#nst .

By item (c) of Lemma 3.6,

⟨p ′ @and p ′′,n, ε⟩ −→nst
∗

⟨p ′1 @and p
′′
,n, e⟩ .

It remains to be show that ⟨p ′1 @and p
′′
,n, e⟩ leads to an

nested-irreducible description. There are four possibili-
ties following from the fact that the simpler ⟨p ′1,n, e⟩ is
nested-irreducible.
1. If e , ε then, by definition, ⟨p ′1 @and p

′′
,n, e⟩#nst .

2. If p ′1 = @nop, this case is similar to Case 9.1.1.

3. If p ′1 = break, this case is similar to Case 9.1.2.

13



LCTES’18, June 19ś20, 2018, Philadelphia, PA, USA Santos, Lima, Sant’Anna, Ierusalimschy, and Haeusler

4. If isblocked(p ′1,n), this case is similar to Case 9.2.

Case 9.2. isblocked(p ′,n). There are three subcases.
Case 9.2.1. p ′′ = @nop. Then, by and-nop2,

⟨p ′ @and @nop,n, ε⟩ −→nst
1

⟨p ′,n, ε⟩#nst .

Case 9.2.2. p ′′ = break. Then, by and-brk2,

⟨p ′ @and break,n, ε⟩ −→nst
1

⟨clear(p ′); break,n, ε⟩ .

From this point on, this case is similar to Case 9.1.2.

Case 9.2.3. p ′′ , @nop, break. Then, by the induction
hypothesis, there are p ′′1 and e such that

⟨p ′′,n, ε⟩ −→nst
∗

⟨p ′′1 ,n, e⟩#nst .

By item (a) of Lemma 3.6,

⟨p ′ @and p ′′,n, ε⟩ −→nst
∗

⟨p ′ @and p ′′1 ,n, e⟩ .

It remains to be show that ⟨p ′ @and p ′′1 ,n, e⟩ leads to an
nested-irreducible description. There are four possibili-
ties following from the fact that the simpler ⟨p ′′1 ,n, e⟩
is nested-irreducible.
1. If e , ε then, by definition, ⟨p ′ @and p ′′1 ,n, e⟩#nst .

2. If p ′′1 = @nop, this case is similar to Case 9.2.1.

3. If p ′′1 = break, this case is similar to Case 9.2.2.

4. If isblocked(p ′′1 ,n) then, as both sides are blocked, by
definition, ⟨p ′ @and p ′′1 ,n, e⟩#nst .

Case 10. p = p ′ or p ′′. Then, by or-expd,

⟨p ′ or p ′′,n, ε⟩ −→nst
1

⟨p ′ @or (@canrun(n); p ′′),n, ε⟩ .

From this point on, this case is similar to Case 11.

Case 11. p = p ′ @or p ′′. There are two subcases.
Case 11.1. ¬ isblocked(p ′,n). There are three subcases.
Case 11.1.1. p ′ = @nop. Then, by or-nop1,

⟨@nop @or p ′′,n, ε⟩ −→nst
1

⟨clear(p ′′),n, ε⟩ . (11)

From (11), by item (a) Assumption 3.7,

⟨clear(p ′′),n, ε⟩ −→nst
∗

⟨@nop,n, ε⟩#nst .

Case 11.1.2. p ′ = break. Similar to Case 9.1.2.

Case 11.1.3. p ′ , @nop, break. Similar to Case 9.1.3.

Case 11.2. isblocked(p ′,n). There are three subcases.
Case 11.2.1. p ′′ = @nop. Then, by or-nop2,

⟨p ′ @or @nop,n, ε⟩ −→nst
1

⟨clear(p ′),n, ε⟩ . (12)

From (12), by item (a) of Assumption 3.7 and by defini-
tion of clear ,

⟨clear(p ′),n, ε⟩ −→nst
∗

⟨@nop,n, ε⟩#nst .

Case 11.2.2. p ′′ = break. Similar to Case 9.2.2.

Case 11.2.3. p ′′ , @nop, break. Similar to Case 9.2.3.
□

Lemma 3.12.

(a) If δ −→out
push

δ ′ then rank(δ ) = rank(δ ′).

(b) If δ −→out
pop

δ ′ then rank(δ ) > rank(δ ′).

Proof. Let δ = ⟨p,n, e⟩, δ ′
= ⟨p ′,n′, e ′⟩, rank(δ ) = ⟨i, j⟩,

and rank(δ ′) = ⟨i ′, j ′⟩.

(a) Suppose ⟨p,n, e⟩ −→out
push

⟨p ′,n′, e ′⟩. Then, by push, e , ε ,
p ′ = bcast(p, e), n′ = n + 1, and e ′ = ε . By Defini-
tion 3.10, j = n + 1, as e , ε , and j ′ = n + 1, as e ′ = ε

and n′ = n + 1; hence j = j ′. It remains to be shown
that i = i ′:

i = pot(p, e) by Definition 3.10

= pot ′(bcast(p, e)) by Definition 3.9

= pot ′(p ′) since p ′ = bcast(p, e)

= pot ′(bcast(p ′, ε)) by definition of bcast

= pot ′(bcast(p ′, e ′)) since e ′ = ε

= pot(p ′, e ′) by Definition 3.9

= i ′ by Definition 3.10

Therefore, ⟨i, j⟩ = ⟨i ′, j ′⟩.
(b) Suppose ⟨p,n, e⟩ −→out

pop
⟨p ′,n′, e ′⟩. Then, by pop, p = p ′,

n > 0, n′ = n − 1, and e = e ′ = ε . By Definition 3.9,
pot(bcast(p, e)) = pot(bcast(p ′, e ′)); hence i = i ′. And
by Definition 3.10, j = n, as e = ε , and j ′ = n − 1,
as e ′ = ε and n′ = n − 1; hence j > j ′. Therefore,
⟨i, j⟩ > ⟨i ′, j ′⟩. □

Lemma 3.13. If δ −→nst δ ′ then rank(δ ) ≥ rank(δ ′).

Proof. We proceed by induction on the structure of −→nst
derivations. Let δ = ⟨p,n, e⟩, δ ′

= ⟨p ′,n′, e ′⟩, rank(δ ) = ⟨i, j⟩,
and rank(δ ′) = ⟨i ′, j ′⟩. By the hypothesis of the lemma, there
is a derivation π such that

π ⊩ ⟨p,n, e⟩ −→nst ⟨p ′,n′, e ′⟩ .

By definition of −→nst , e = ε and n = n′. Depending on the
structure of program p, there are 11 possibilities. In each one
of them we show that rank(δ ) ≥ rank(δ ′).

Case 1. p = mem(id). Then π is an instance of mem. Hence
p ′ = @nop and e ′ = ε . Thus rank(δ ) = rank(δ ′) = ⟨0,n⟩.

Case 2. p = emitint(e1). Then π is an instance of emit-int.
Hence p ′ = @canrun and e ′ = e1 , ε . Thus

rank(δ ) = ⟨1,n⟩ > ⟨0,n + 1⟩ = rank(δ ′) .

Case 3. p = @canrun(n). Then π is an instance of can-run.
Hence p ′ = @nop and e ′ = ε . Thus

rank(δ ) = rank(δ ′) = ⟨0,n⟩ .

Case 4. p = ifp thenp1 elsep2. There are two subcases.
Case 4.1. eval(mem(id)). Then π is an instance of if-true.
Hence p ′ = p1 and e ′ = ε . Thus

rank(δ ) = ⟨max{pot ′(p1),pot
′(p2)},n⟩

≥ ⟨pot ′(p1),n⟩ = rank(δ ′) .

Case 4.2. ¬ eval(mem(id)). Similar to Case 4.1.
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Case 5. p = p1; p2. There are three subcases.
Case 5.1. p1 = @nop. Then π is an instance of seq-nop.
Hence p ′ = p2 and e ′ = ε . Thus

rank(δ ) = ⟨pot ′(p1) + pot
′(p2),n⟩

≥ ⟨pot ′(p2),n⟩ = rank(δ ′) .

Case 5.2. p1 = break. Then π is an instance of seq-brk.
Hence p ′ = p1 and e ′ = ε . Thus

rank(δ ) = rank(δ ′) = ⟨0,n⟩ .

Case 5.3. p1 , @nop, break. Then π is an instance of seq-
adv. Hence there is a derivation π ′ such that

π ′
⊩ ⟨p1,n, ε⟩ −→nst ⟨p ′1,n, e

′
1⟩ ,

for some p ′1 and e ′1. Thus p
′
= p ′1;p2 and e ′ = e ′1. By the

induction hypothesis,

rank(⟨p1,n, ε⟩) ≥ rank(⟨p ′1,n, e
′
1⟩) . (13)

There are two subcases.
Case 5.3.1. e ′ = ε Then

rank(δ ) = ⟨pot ′(p1) + pot
′(p2),n⟩ and

rank(δ ′) = ⟨pot ′(p ′1) + pot
′(p2),n⟩ .

By (13), pot ′(p1) ≥ pot ′(p ′1). Thus

rank(δ ) ≥ rank(δ ′) .

Case 5.3.2. e ′ , ε . Then π ′ contains one application
of emit-int, which consumes one emitint(e ′) statement
from p1 and implies pot ′(p1) > pot ′(p ′1). Thus

rank(δ ) = ⟨pot ′(p1) + pot
′(p2),n⟩

> ⟨pot ′(p ′1) + pot
′(p2),n + 1⟩ = rank(δ ′) .

Case 6. p = loopp1. Then π is an instance of loop-expd.
Hence p ′ = p1 @loopp1 and e ′ = ε . By item (b) of Assump-
tion 3.7, all execution paths of p1 contain at least one oc-
currence of break or awaitext . Thus, by condition (2) in
Definition 3.9,

rank(δ ) = rank(δ ′) = ⟨pot ′(p1),n⟩ .

Case 7. p = p1 @loopp2. There are three subcases.
Case 7.1. p1 = @nop. Similar to Case 5.1.

Case 7.2. p1 = break. Similar to Case 5.2.

Case 7.3. p1 , @nop, break. Then π is an instance of loop-
adv. Hence there is a derivation π ′ such that

π ′
⊩ ⟨p1,n, ε⟩ −→nst ⟨p ′1,n, e

′
1⟩ ,

for some p ′1 and e ′1. Thus p
′
= p ′1 @loop p2 and e ′ = e ′1.

There are two subcases.
Case 7.3.1. pot ′(p) = pot ′(p1). Then every execution
path of p1 contains a break or awaitext statement. A
single −→nst cannot terminate the loop, since p1 , break,
nor can it consume an awaitext , which means that all
execution paths in p ′1 still contain a break or awaitext .
Hence pot ′(p ′) = pot ′(p ′1). The rest of this proof is simi-
lar to that of Case 5.3.

Case 7.3.2. pot ′(p) = pot ′(p1) + pot
′(p2). Then some ex-

ecution path in p1 does not contain a break or awaitext
statement. Since p1 , @nop, a single −→nst cannot restart
the loop, which means that p ′1 still contain some execu-
tion path in which a break or awaitext does not occur.
Hence pot ′(p ′) = pot ′(p ′1) + pot ′(p2). The rest of this
proof is similar to that of Case 5.3.

Case 8. p = p1 and p2. Then π is an instance of and-expd.
Hence p ′ = p1 @and (@canrun(n); p2) and e ′ = ε . Thus

rank(δ ) = rank(δ ′) = ⟨pot ′(p1) + pot
′(p2),n⟩ .

Case 9. p = p1 @and p2. There are two subcases. stack level n.
Case 9.1. ¬ isblocked(p1,n). There are three subcases.
Case 9.1.1. p1 = @nop. Then π is an instance of and-
nop1. Hence p ′ = p2 and e ′ = ε . Thus

rank(δ ) = rank(δ ′) = ⟨0 + pot ′(p2),n⟩ .

Case 9.1.2. p1 = break. Then π is an instance of and-
brk1. Hence p ′ = clear(p2); break and e ′ = ε . By
item (a) of Assumption 3.7 and by the definition of clear ,
clear(p2) does not contain emitint statements. Thus

rank(δ ) = rank(δ ′) = ⟨0,n⟩ .

Case 9.1.3. p1 , @nop, break. Then π is an instance
of and-adv1. As p1 , break and p2 , break (other-
wise and-brk2 would have taken precedence), the rest
of this proof is similar to that of Case 5.3.

Case 9.2. isblocked(p1,n). Similar to Case 9.1

Case 10. p = p1 or p2. Then π is an instance of or-expd.
Hence p ′ = p1 @or (@canrun(n); p2) and e ′ = ε . Thus

rank(δ ) = rank(δ ′) = ⟨pot ′(p1) + pot
′(p2),n⟩ .

Case 11. p = p1 @or p2. There are two subcases.
Case 11.1. ¬ isblocked(p1,n). There are three subcases.
Case 11.1.1. p1 = @nop. Then π is an instance of or-
nop1. Hence p ′ = clear(p2) and e ′ = ε . By item (a) of
Assumption 3.7 and by the definition of clear , p ′ does
not contain emitint statements. Thus

rank(δ ) = rank(δ ′) = ⟨0,n⟩ .

Case 11.1.2. p1 = break. Similar to Case 9.1.2.

Case 11.1.3. p1 , @nop, break. Similar to Case 9.1.3.

Case 11.2. isblocked(p1,n). Similar to Case 11.1. □

Theorem 3.14. If δ −→nst
∗

δ ′ then rank(δ ) ≥ rank(δ ′).

Proof. If δ −→nst
∗

δ ′ then δ −→nst
i

δ ′, for some i . We proceed by
induction on i . The theorem is trivially true for i = 0 and
follows directly from Lemma 3.13 for i = 1. Suppose δ −→nst

1

δ ′
1 −→nst

i−1
δ ′, for some i > 1 and δ ′

1. Thus, by Lemma 3.13 and
by the induction hypothesis,

rank(δ ) ≥ rank(δ ′
1) ≥ rank(δ ′) . □
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Theorem 3.15 (Termination). For any δ , there is a δ ′
# such

that δ −→
∗

δ ′
#.

Proof. By lexicographic induction on rank(δ ). Letδ = ⟨p,n, e⟩

and rank(δ ) = ⟨i, j⟩.

Basis. If ⟨i, j⟩ = ⟨0, 0⟩ then δ cannot be advanced by −→out ,
as j = 0 implies e = ε and n = 0 (neither push nor pop can
be applied). There are two possibilities: either δ is nested
irreducible or it is not. In the first case, the theorem is trivially
true, as δ −→nst

0
δ#nst . Suppose δ is not nested irreducible. Then,

by Theorem 3.8, δ −→nst
∗

δ ′
#nst , for some δ ′

#nst . By Theorem 3.14,

⟨i, j⟩ = ⟨0, 0⟩ ≥ rank(δ ′) ,

which implies rank(δ ′) = ⟨0, 0⟩.

Induction. Let ⟨i, j⟩ , ⟨0, 0⟩. There are two subcases.

Case 1. δ is nested-irreducible. There are two subcases.
Case 1.1. j = 0. By Definition 3.11, δ#. Thus δ −→

0
δ#.

Case 1.2. j > 0. There are two subcases. event.
Case 1.2.1. e , ε . Then, by push and by Theorem 3.8,
there are δ ′

1 and δ
′
#nst = ⟨p ′,n + 1, e ′⟩ such that

δ −→out
push

δ ′
1 −→nst

∗
δ ′
#nst .

Thus, by item (a) of Lemma 3.12 and by Theorem 3.14,

rank(δ ) = rank(δ ′
1) = ⟨i, j⟩

≥ rank(δ ′) = ⟨i ′, j ′⟩ .

If e ′ = ε , then i = i ′ and j = j ′, and the rest of this proof
is similar to that of Case 1.2.2. Otherwise, if e ′ , ε then
i > i ′, since an emitint(e

′) was consumed by the nested
transitions. Thus,

rank(δ ) > rank(δ ′) .

By the induction hypothesis, δ ′ −→
∗

δ ′′
# , for some δ ′′

# .
Therefore, δ −→

∗
δ ′′
# .

Case 1.2.2. e = ε . Then, since j > 0,δ−→out
pop

δ ′, for someδ ′′.
By item (b) of Lemma 3.12,

rank(δ ) > rank(δ ′) .

Hence by the induction hypothesis, there is a δ ′′
# such

that δ ′ −→
∗

δ ′′
# . Therefore, δ −→

∗
δ ′′
# .

Case 2. δ is not nested-irreducible. Then e = ε and, by The-
orems 3.8 and 3.14, there is a δ ′

#nst such that δ −→nst
∗

δ ′
#nst

with rank(δ ) ≥ rank(δ ′
#nst). The rest of this proof is simi-

lar to that of Case 1. □

B Artifact Appendix

B.1 Abstract

Our artifact includes an open-source implementation of the
programming language Céu. The implementation is based
on and should conform with the formal semantics presented
in this paper. The artifact also includes an executable script

with over 3500 test cases of valid and invalid programs in
Céu. The script is customizable and allows to create new
tests providing inputs and expected outputs. The evaluation
platform is a Linux/Intel with Lua-5.3 and GCC-7.2 installed.

B.2 Artifact Check-List (Meta-Information)

• Compilation: The output of the Céu compiler is a C pro-
gram that requires a C compiler (e.g., GCC-7.2).

• Transformations: The compiler of Céu is a Lua program
(Lua-5.3) that generates a C program.

• Data set: The data set is a set of program test cases included
in the language distribution.

• Run-time environment: Linux with Lua-5.3 and GCC-7.2.
Root access is required to install a single executable file.

• Hardware: An off-the-shelf Intel machine.
• Execution: 5-10 minutes for the full test.
• Output: Console output: Success (termination) or Fail (abor-
tion).

• Experiments: Manual steps performed by the user in the
command line.

• Artifacts publicly available?: Yes.
• Artifacts functional?: Yes.
• Artifacts reusable?: No.
• Results validated?: No.

B.3 Description

B.3.1 How Delivered

The compiler/distribution of Céu is available on GitHub:
https://github.com/fsantanna/ceu

The website of Céu includes an introductory video and an online
tutorial:

http://www.ceu-lang.org/

The language also provides extensive documentation online:
http://fsantanna.github.io/ceu/out/manual/v0.30/

B.3.2 Hardware Dependencies

An off-the-shelf Intel machine.

B.3.3 Software Dependencies

Linux, Lua-5.3 (with lpeg-1.0.0), and GCC-7.2.

B.3.4 Data Sets

A set of more than 3500 programs packed in a single script file
which is included with the compiler distribution.

B.4 Installation

Install all required software (assuming an Ubuntu-based distribu-
tion):

$ sudo apt-get install git lua5.3 lua-lpeg liblua5.3-0 \

liblua5.3-dev

Clone the repository of Céu:

$ git clone https://github.com/fsantanna/ceu

$ cd ceu/

$ git checkout v0.30

Install Céu:

$ make

$ sudo make install # install as "/usr/local/bin/ceu"
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B.5 Experiment Workflow

Run the experiment:

$ cd tst/

$ ./run.lua

B.6 Evaluation and Expected Result

The experiment will execute all test cases. In about 5-10 minutes, a
summary will be printed on screen:

$ cd tst/

$ ./run.lua

<...> # output with the test programs

stats = {

count = 3478,

trails = 9082,

bytes = 50803896,

bcasts = 0,

visits = 5189770,

}

B.7 Experiment Customization

B.7.1 Test Cases

The file tst/tests.lua includes all test cases. Each test case contains
a program in Céu as well as the expected result, e.g.:

Test { [[

var int ret = 0;

var int i;

loop i in [0 -> 10[ do

ret = ret + 1;

end

escape ret;

]],

run = 10,

}

This test case should compile and run successfully yielding 10.
To customize the experiment, include a new test case at line 440,

after the string ł-- OK: well testedž.

B.7.2 Sample Programs

The distribution of Céu comes with sample programs that can be
executed as follows:

$ cd /<...>/ceu/ # change to the Céu repository

$ make samples # execute all samples one by one

B.7.3 Single File

It is also possible to compile a single file with a program in Céu:

$ cd /<...>/ceu/ # change to the Céu repository

$ make one CEU_SRC=/tmp/tst.ceu # compile a program

$ /tmp/tst # execute it

As an example, the file /tmp/tst.ceu may contain a program
such as follows:

input int A; // two input events

input int B;

spawn do // generates test inputs asynchronously

await async do

emit A(10);

emit B(100);

end

end

var int a = await A; // main program

var int b = await B;

escape a+b; // 110 is the result of the program
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