Transparent Standby for Low-Power,
Resource-Constrained Embedded Systems

A Programming Language-Based Approach (Short WIP Paper)

Francisco Sant’Anna
Rio de Janeiro State University, Brazil
francisco@ime.uerj.br

Ana Lucia de Moura
PUC-RIo, Brazil
amoura@inf.puc-rio.br

Abstract

Standby efficiency for connected devices is one of the priori-
ties of the G20’s Energy Efficiency Action Plan. We propose
transparent programming language mechanisms to enforce
that applications remain in the deepest standby modes for
the longest periods of time. We extend the programming
language Ctu with support for interrupt service routines
and with a simple power management runtime. Based on
these primitives, we also provide device drivers that allow
applications to take advantage of standby automatically. Our
approach relies on the synchronous semantics of the lan-
guage which guarantees that reactions to the environment
always reach an idle state amenable to standby. In addition,
in order to lower the programming barrier of adoption, we
show that programs in C£U can keep a sequential syntactic
structure, even when applications require non-trivial con-
current behavior.

CCS Concepts - Computer systems organization —
Embedded software; - Software and its engineering —
Runtime environments;

Keywords Arduino, Concurrency, Embedded Systems, Es-
terel, IoT, Standby

ACM Reference Format:

Francisco Sant’Anna, Alexandre Sztajnberg, Ana Lucia de Moura,
and Noemi Rodrigues. 2018. Transparent Standby for Low-Power,
Resource-Constrained Embedded Systems: A Programming Language-
Based Approach (Short WIP Paper). In Proceedings of 19th ACM

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

LCTES’18, June 19-20, 2018, Philadelphia, PA, USA

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5803-3/18/06...$15.00
https://doi.org/10.1145/3211332.3211337

94

Alexandre Sztajnberg
Rio de Janeiro State University, Brazil
alexszt@ime.uerj.br

Noemi Rodrigues
PUC-Rio, Brazil
noemi@inf.puc-rio.br

SIGPLAN/SIGBED Conference on Languages, Compilers, and Tools for
Embedded Systems (LCTES’18). ACM, New York, NY, USA, 5 pages.
https://doi.org/10.1145/3211332.3211337

1 Introduction

According to the International Energy Agency (IEA), the
number of network-connected devices is expected to reach
50 billion by 2020 with the expansion of the Internet of
Things (IoT) [6]. Most of the energy to power these devices
will be consumed in standby mode, i.e., when they are nei-
ther transmitting or processing data. However, making ef-
fective use of standby requires software-related efforts in
order to detect idle periods of activity in a device, identify
peripherals that must remain functional, and apply appro-
priate sleep mode levels in its microcontroller. Therefore,
our research has the following goals: (i) address energy effi-
ciency through rigorous use of standby; (ii) target low-power,
resource-constrained embedded architectures that form the
IoT; (iii) provide standby mechanisms at the programming
language level that scale to all applications; and (iv) support
transparent/non-intrusive standby mechanisms that reduce
barriers of adoption.

Our proposal lies at the bottom of the software develop-
ment layers—programming language mechanisms—meaning
that all applications should take advantage of low-power
standby modes automatically, without extra programming
efforts. We extend the programming language CEu [8, 9]
with support for interrupt service routines (ISRs) and with a
simple power management runtime (PMR). In contrast with
other concurrency models (e.g., thread and actor based), the
synchronous semantics of CEU guarantees that reactions
to the environment always reach an idle state amenable to
standby. Previous work [9] demonstrates the expressiveness
of C£u in the context of Wireless Sensor Networks and dis-
cusses the development of drivers, network protocols, and
full applications in the language. It also attests a small over-
head of memory in comparison to C (around 5-10%), thus
being a suitable alternative for constrained devices. The lan-
guage runtime is in the order of a few kilobytes only (less
than 5Kb).

https://doi.org/10.1145/3211332.3211337
https://doi.org/10.1145/3211332.3211337

LCTES’18, June 19-20, 2018, Philadelphia, PA, USA

In our approach, each supported microcontroller requires
hooks in C for the ISRs and PMR, and each peripheral re-
quires a driver in C£u. These are write-once code that is typ-
ically packaged and distributed in a software development
kit (SDK). Then, all new applications built on top of these
drivers take advantage of standby automatically. As a proof
of concept, we provide an open source SDK with support
for 8-bit AVR/ATmega and 32-bit ARM/Cortex-M0 microcon-
trollers, and a variety of peripherals, such as for GPIO, A/D
converter, USART, SPI, and the nRF24L01 transceiver. We
developed a number of simple applications using these pe-
ripherals concurrently and could verify that they remain in
the deepest standby modes for the longest periods of time.

In Section 2, we compare the structure of programs in CEu
and Arduino [2], whose primary goal is to reduce the pro-
gramming barrier of adoption for a non-technical audience.
We show that we can keep the intended sequential reason-
ing of Arduino even when applications require non-trivial
concurrent behavior. In Section 3, we discuss the software
infrastructure that allows for unmodified programs in Ctu
to take advantage of standby automatically. In Section 5, we
discuss future work and conclude the paper.

2 The Structured Synchronous
Programming Language CEU
Ctu is a Esterel-based [8] reactive programming language
targeting resource-constrained embedded systems [9]. It is
grounded on the synchronous concurrency model, which has
been successfully adopted in the context of hard real-time
systems such as avionics and automobiles industry since the
80’s [3]. The synchronous model trades power for reliability
and has a simpler model of time that suits most requirements
of IoT applications. On the one hand, this model cannot di-
rectly express time-consuming computations, such as com-
pression and cryptography algorithms, which are typically
either absent or delegated to auxiliary chips in the context
of the IoT. On the other hand, all reactions to the external
environment are guaranteed to be computed in bounded
time [9], ensuring that applications always reach an idle
state amenable to standby mode. Overall, C£u aims to offer
a concurrent, safe, and expressive alternative to C with the
characteristics that follow:

Reactive: code only executes in reactions to events and
is idle most of the time.

Structured: programs use structured control mechanisms,
such as await (to suspend a line of execution), and par
(to combine multiple lines of execution).

Synchronous: reactions run atomically and to comple-
tion on each line of execution, i.e., there’s no implicit
preemption or real parallelism.

Structured reactive programming lets developers write code
in direct style, recovering from the inversion of control im-
posed by event-driven execution [1, 5, 7].

95

. Sant’Anna, A. Sztajnberg, A.L. de Moura, and N. Rodrigues

while (1) { 1 loop do
delay(1000); 2 await 1s;
int v = 3 var int v =
analogRead(); 4 await AnalogRead();
radioWrite(v); 5 await RadioWrite(v);
3 6 end

[a] Version in Arduino [b] Version in Ctu

Figure 1. Sequence of I/O operations running in a loop.

uint32_t prv = 1 par/or do

millis(); 2 await RadioAvail();
while (1) { 3 with
if (radioAvail()) { 4 1loop do
break; 5 await 1s;
3 6 var int v =
uint32_t cur = 7 await AnalogRead();
millis(); 8 await RadioWrite(v);
if (cur>prv+1000) { 9 end
prv = cur; 10 end
int v = 11
analogRead(); 12
radioWrite(v); 13
} 14
} 15 .

[a] Version in Arduino [b] Version in Ctu

Figure 2. Achieving concurrency between I/O operations.

2.1 A Motivating Example

Figure 1.a shows a straightforward, easy-to-read code snip-
pet in Arduino that executes forever in a loop a sequence
of operations as follows: waits for 1 second (In. 2), performs
an A/D conversion (In. 3-4), and broadcasts the read value
(In. 5). Figure 1.b shows the same code in Ctu, with the
noteworthy difference that operations that interact with the
environment and take time use the await keyword. The tra-
ditional structured paradigm encouraged in Arduino (with
blocks, loops, and sequences) allows for simple and readable
code, avoiding the complexity of dealing with ISRs. However,
the use of blocking operations, such as delay(1000) (In. 2),
prevents that other operations execute concurrently.
Suppose that we now want to immediately abort the loop
in Figure 1.a at any time, as soon as a radio message arrives.
Since the message might arrive concurrently with any of the
blocking operations, we need to modify the structure of the
program in Arduino. Figure 2.a replaces the blocking delay to
the polling millis, which immediately returns the number of
milliseconds since the reset. Now, we start by registering the
current time (In. 1-2) and, on each loop iteration, we recheck
the time to see if one second has elapsed (In. 7-9). Since these
operations are non-blocking, we can intercalate their execu-
tion with checks for message arrivals (In. 4-6). If the time is
up, we start counting it again (In. 10) before proceeding to
the original operations in sequence (In. 11-13). The original

Transparent Standby for Low-Power, Resource-Constrained ...

structured style in Figure 1.a has been drastically violated to
accommodate concurrency in Figure 2.a. Furthermore, we
only adapted the delay operation, but the other blocking
operations (analogRead and radioWrite) would also need to
be changed to achieve maximum concurrency. Alternatively,
we could resort to ISRs or implement an event-driven sched-
uler to handle the operations [4], but ultimately, the program
readability would still be compromised in the same way.
The program in Figure 2.b in C£u extends the one in Fig-
ure 1.b to accommodate concurrency. In contrast with the
Arduino version, the original code in C£U remains unmodi-
fied (Figure 2.b, In. 4-9) and concurrency is achieved through
the par/or construct, which creates two lines of execution
and terminates when either of them terminates, aborting the
other automatically. This approach preserves the sequential,
easy-to-read style while introducing concurrency seamlessly.

2.2 Standby Considerations

The structure of the program in Figure 2.b also indicates
which peripherals are active at a given time. For instance,
when the program is awaiting concurrently in lines 2 and 7,
only the radio transceiver and A/D converter can awake the
program. Hence, the language runtime can choose the most
energy-efficient sleep mode that allows these two peripher-
als to awake the microcontroller from associated interrupts.
Since the semantics of CEu enforces the program to always
reach await statements in all active lines of execution, it is
always possible to put the microcontroller into the optimal
sleep mode after each reaction to the environment.

3 Standby Infrastructure

In order to empower the example in Figure 2.b with auto-
matic standby, we have developed some extensions to CEu
as follows:

e We made the runtime of C£u interrupt driven and put
the microcontroller in standby after each reaction to
the environment.

e We provided operations for the drivers to indicate
which interrupts might awake the program.

e We included support for ISRs in C£U to generate input
events to the program and awake the microcontroller.

Figure 3 shows the driver for the A/D converter in CEu.
This code is specific to the ATmega328p microcontroller and
must be adapted to work in other platforms. For simplic-
ity, we assume in the paper that the converter has a single
channel to avoid having to deal with multiplexing.

The driver exposes raw I/O events (In. 3-4) that will only
deal with low-level port manipulation in the microcontroller.
Output events are triggered with the emit keyword (In. 29),
while input events are captured with the await keyword (In.
30). The output event ADC_REQUEST actual implementation (In.
9-15) enables ADC interrupts and starts an analog-to-digital
conversion asynchronously in the peripheral for the single

96

LCTES’18, June 19-20, 2018, Philadelphia, PA, USA

// Exposed driver functionality

output void ADC_REQUEST; //low—level request
input int ADC_DONE; // low—level response
code AnalogRead (void) -> int; // high—level abstraction

//" Driver implementation

output void ADC_REQUEST do
{
ADMUX = 0x40 | (AQ & 0x07); //selects channel A0
bitSet(ADCSRA, ADIE); // enables interrupt
bitSet(ADCSRA, ADSC); // starts the conversion
3

end

async/isr {ADC_vect_num} do
{ bitClear(ADCSRA, ADIE); } //disables interrupt
var int value = {ADC}; //reads register with the value
emit ADC_DONE(value);

end

code AnalogRead (void) -> int do
{PM_SET(PM_ADC, 1);}
do finalize with
{PM_SET(PM_ADC, @);}
end

emit ADC_REQUEST;
var int value = await ADC_DONE;

escape value;
end

Figure 3. Ctu driver for the ATmega328p A/D converter.

channel A0. In C£u, any code in between { and } is treated
as an inline C chunk, allowing for easy integration with C
for low-level operations.

The async/isr construct of CEu defines an ISR which ex-
ecutes asynchronously with the program when the specified
interrupt occurs. Only ISRs can emit input events to the
program. In the example, we define an ISR to handle ADC
interrupts which fire whenever a conversion is complete (In.
17-21). Although the ISR body executes asynchronously on
interrupts, the input emission (In. 20) only takes effect on
a subsequent reaction, when the synchronous part of the
program becomes idle. This way, race conditions are only
possible with async/isr blocks, which are typically hidden
inside device drivers. C£u also provides an atomic primitive
to protect critical sections of code.

The low-level events are the pieces that vary among plat-
forms. A driver can also expose a higher-level portable ab-
straction to client code. In the example, the AnalogRead ab-
straction (In. 23-33) takes care of starting and awaiting the

LCTES’18, June 19-20, 2018, Philadelphia, PA, USA

conversion (In. 29-30), as well as dealing with the power man-
agement runtime (PMR). The PM_SET(PM_ADC, 1) (In. 24) tells
the system that, when entering in sleep mode, the ADC must
be kept running. The PM_SET(PM_ADC, @) inside the finalize
clause (In. 25-27) releases the ADC subsystem from the PMR.

The finalize construct of CEU executes the nested code
whenever its enclosing block terminates or is aborted ex-
ternally. The example of Figure 2.b invokes the AnalogRead
abstraction (In. 7) concurrently with RadioAvail (In. 2). The
AnalogRead may terminate normally or a radio message may
arrive during the A/D conversion, causing the AnalogRead to
abort abruptly. In either case, the finalize clause executes
and puts the PMR in a consistent state.

The PMR also expects a platform-specific power manage-
ment module to be able to put the microcontroller into the
most efficient sleep mode possible. The code in Figure 4 im-
plements the pm_sleep function for the ATmega328p micro-
controller which the PMR calls when the program becomes
idle. Each device has an associated index (In. 6-10) in the pm
bit vector (In. 4). The driver manipulates its device’s index to
indicate its state (Figure 3, In. 24,26). The pm_sleep queries
the vector to choose the appropriate sleep mode. In the exam-
ple, if the timer is active (In. 13), the microcontroller can only
use the least efficient mode' (In. 14). In the best case, e.g.,
if only external interrupts are required, the microcontroller
can use the most efficient mode (In. 18).

With all the standby infrastructure set, the unmodified
program of Figure 2.b automatically takes advantage of the
deepest sleep modes for the longest periods of time possible.

4 Discussion

The application of Figure 2.b relies solely on the driver of
Figure 3 to achieve transparent standby. In C£u, the burden to
deal with standby is transferred to the device drivers, which
are write-once code written by specialists and distributed
with an SDK. By transferring the work from the applications
to the language level, novice or domain programmers never
have to deal with standby explicitly. In contrast, general-
purpose languages typically provide low-power libraries to
deal with standby. However, programmers still have to call
these libraries explicitly, characterizing a mechanism that is
manual and error prone.

In Figure 2.b, when introducing concurrency, the structure
of the program remains sequential and amenable to inference
of the appropriate sleep mode. In comparison with Arduino,
whose main goal is to lower the entry barrier for embedded
development, C£u also preserves the sequential structure for
concurrent applications.

The synchronous model of C£u provides logical paral-
lelism to enable proper separation of concerns, while avoid-
ing the hassle of explicit synchronization primitives (e.g.,

! We use an external library for the sleep modes: http://www.rocketscream.
com/blog/2011/07/04/lightweight-low-power-arduino-library/

F. Sant’Anna, A. Sztajnberg, A.L. de Moura, and N. Rodrigues

97

1 #define PM_GET(dev) bitRead(pm,dev)

2 #define PM_SET(dev,v) bitWrite(pm,dev,v)
3

4 static u32 pm = @; //upto32 peripherals

5

6 enum {

7 CEU_PM_ADC = 0,

8 CEU_PM_TIMER1,

9 <...>

’
0}

2 void pm_sleep (void) {
3 if (PM_GET(PM_TIMER1) || <...>) {

4 LowPower.idle(PM_GET(PM_ADC),<...>)
5 } else if (PM_GET(PM_ADC)) {

6 LowPower .adcNoiseReduction(<...>);
7 } else {

8 LowPower . powerDown(<...>);

9 }

o}

1}

Figure 4. Power management module for the ATmega328p
microcontroller.

locks and mutexes). Yet, asynchronous interrupts provide
real-time responsiveness for time-sensitive operations closer
to the hardware.

5 Conclusion and Future Work

In this work, we address standby efficiency for embedded
devices at the level of programming languages. We propose
a software infrastructure for the programming language Ctu
that encompasses a power management runtime and support
for interrupt service routines in the language. Our approach
relies on the synchronous semantics of the language which
guarantees that reactions to the environment always reach
an idle state amenable to standby. This way, application writ-
ten in CEU can take advantage of the longest periods of time
and deepest sleep modes possible without extra program-
ming efforts.

In future work, we will evaluate the consumption of realis-
tic applications. The Arduino community has an abundance
of open-source projects which can be rewritten in CEU to
take advantage of transparent standby. In this scenario, we
can evaluate the time to rewrite, the resulting program struc-
ture, and the actual energy efficiency.

Acknowledgments

The authors would like to thank Guilherme Simas for the
initial explorations with the language extensions and de-
velopment of some of the device drivers. This work was
supported by the Serrapilheira Institute (grant number Serra-
1708-15612).

http://www.rocketscream.com/blog/2011/07/04/lightweight-low-power-arduino-library/
http://www.rocketscream.com/blog/2011/07/04/lightweight-low-power-arduino-library/

Transparent Standby for Low-Power, Resource-Constrained ... LCTES’18, June 19-20, 2018, Philadelphia, PA, USA

References [6] OECD/IEA. 2014. More Data Less Energy—Making Network Standby More

[1] A.Adya et al. 2002. Cooperative Task Management Without Manual Efficient in Billions of Connected Devices. Technical Report. International

Stack Management. In Proceedings of ATEC 02. USENIX Association, Energy Agency.
289-302. [7] Guido Salvaneschi et al. 2014. REScala: Bridging between object-

[2] Massimo Banzi and Michael Shiloh. 2014. Getting started with Arduino: oriented and functional style in reactive applications. In Proceedings of

the open source electronics prototyping platform. Maker Media, Inc.
Albert Benveniste, Paul Caspi, Stephen A. Edwards, Nicolas Halbwachs,
Paul Le Guernic, and Robert De Simone. 2003. The synchronous lan-
guages twelve years later. In Proceedings of the IEEE, Vol. 91. 64-83.

=

Modularity’13. ACM, 25-36.

Francisco Sant’anna, Roberto Ierusalimschy, Noemi Rodriguez, Silvana
Rossetto, and Adriano Branco. 2017. The Design and Implementation
of the Synchronous Language CEU. ACM Trans. Embed. Comput. Syst.

16, 4, Article 98 (July 2017), 26 pages. https://doi.org/10.1145/3035544
Francisco Sant’Anna, Noemi Rodriguez, Roberto Ierusalimschy, Olaf
Landsiedel, and Philippas Tsigas. 2013. Safe System-level Concurrency
on Resource-Constrained Nodes. In Proceedings of SenSys’13. ACM.

[4] David Gay, Philip Levis, Robert von Behren, Matt Welsh, Eric Brewer,
and David Culler. 2003. The nesC Language: A Holistic Approach to &
Networked Embedded Systems. In Proceedings of PLDI'03. 1-11.

[5] Ingo Maier, Tiark Rompf, and Martin Odersky. 2010. Deprecating the
observer pattern. Technical Report.

—

98

https://doi.org/10.1145/3035544

	Abstract
	1 Introduction
	2 The Structured Synchronous Programming Language Céu
	2.1 A Motivating Example
	2.2 Standby Considerations

	3 Standby Infrastructure
	4 Discussion
	5 Conclusion and Future Work
	Acknowledgments
	References

