
Structured Synchronous Reactive Programming with Céu

Abstract
Structured synchronous reactive programming (SSRP) augments
classical structured programming (SP) with continuous interaction
with the environment. We advocate SSRP as viable in multiple do-
mains of reactive applications and propose a new abstraction mech-
anism for the synchronous language CÉU: Organisms extend ob-
jects with an execution body that composes multiple lines of ex-
ecution to react to the environment independently. Compositions
bring structured reasoning to concurrency and can better describe
state machines typical of reactive applications. Organisms are sub-
ject to lexical scope and automatic memory management similar to
stack-based allocation for local variables in SP. We show that this
model does not require garbage collection or a free primitive in the
language, eliminating memory leaks by design.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features

General Terms Design, Languages

Keywords Concurrency, Determinism, Esterel, Imperative, Struc-
tured Programming, Synchronous, Reactivity

1. Introduction
Reactive applications interact continuously and in real time with
external stimuli from the environment [4, 18]. They represent a
wide range of software areas and platforms: from games in pow-
erful desktops and “apps” in capable smart phones, to the emerging
internet of things in constrained embedded systems.

Research on special-purpose reactive languages dates back to
the early 80’s, with the co-development of two complementary
styles [5, 27]: The imperative style of Esterel [8] organizes pro-
grams with structured control flow primitives, such as sequences,
repetitions, and parallelism. The dataflow style of Lustre [17] rep-
resents programs as graphs of values, in which a change to a node
updates its dependencies automatically. Both styles rely on the syn-
chronous execution hypothesis which states that the input and cor-
responded output in reactions to the environment are simultaneous
because, in this context, internal computations should run infinitely
faster than the rate of events [27].

In recent years, Functional Reactive Programming (FRP) [34]
has modernized the dataflow style, inspiring a number of languages
and libraries, such as Flapjax [24], Rx (from Microsoft), React
(from Facebook), and Elm [12]. In contrast, the imperative style
of Esterel is confined to the domain of real-time embedded con-

[Copyright notice will appear here once ’preprint’ option is removed.]

trol systems. As a matter of fact, imperative reactivity is now often
associated to the observer pattern, typical in object-oriented sys-
tems, due to its heavy reliance on side effects [22, 25, 29]. How-
ever, short-lived callbacks (i.e., the observers) eliminate any vestige
of structured programming, such as support for long-lasting loops
and automatic variables [3], which are elementary capabilities of
imperative languages. In this sense, callbacks actually disrupt im-
perative reactivity, becoming “our generation’s goto”.12

We believe that all domains of reactive applications can bene-
fit from the imperative style of Esterel, which we now refer to as
Structured Synchronous Reactive Programming (SSRP). SSRP ex-
tends the classical hierarchical control constructs of Structured Pro-
gramming (SP) (i.e., concatenation, selection, and repetition [14])
to support continuous interaction with the environment. In contrast
with FRP, SSRP retains structured and sequential reasoning of con-
current programs, bringing the historical dichotomy between func-
tional and imperative languages also to the reactive domain. How-
ever, the original rigorous semantics of Esterel, which focuses on
static safety guarantees, is not suitable for other reactive applica-
tion domains, such as GUIs, games, and distributed systems. For
instance, the lack of abstractions with dynamic lifetime makes it
difficult to deal with virtual resources such as graphical widgets,
game units, and network sessions.

In practical terms, SSRP provides three extensions to SP: an
“await <event>” statement that suspends a line of execution until
the referred event occurs, keeping all context alive; parallel con-
structs to compose multiple lines of execution and make them con-
current; and an orthogonal mechanism to abort parallel composi-
tions. The await statement represents the imperative-reactive na-
ture of SSRP, recovering sequential execution lost with the observer
pattern. Parallel compositions3 allow for multiple await statements
to coexist, which is necessary to handle concurrent events, common
in reactive applications. Orthogonal abortion is the ability to abort
an activity from outside it, without affecting the overall consistency
of the program (e.g., properly releasing global resources).

In this work, we extend the Esterel-based language CÉU [30]
with a new abstraction mechanism, the organisms, that encapsulate
parallel compositions with an object-like interface. In brief, organ-
isms are to SSRP like procedures are to SP, i.e., one can abstract a
portion of code with a name and manipulate (call) that name from
multiple places. Unlike procedure calls in multi-threaded applica-
tions, organisms have deterministic behavior and do not require ex-
plicit synchronization. Unlike Simula objects [13], organisms react
independently to the environment and do not depend on coopera-
tion, i.e., once instantiated they become alive and reactive (hence
the name organisms). Furthermore, organisms are subject to lexi-

1“Callbacks as our Generations’ Go To Statement”: http://
tirania.org/blog/archive/2013/Aug-15.html

2“Escape from Callback Hell”: http://elm-lang.org/learn/
Escape-from-Callback-Hell.elm

3In this work, the term parallel composition does not imply many-core
parallel execution.

1 2014/10/10

1 input void RESET; // declares an external event
2 var int v = 0; // variable shared by the trails
3 par do
4 loop do // 1st trail
5 await 1s;
6 v = v + 1;
7 printf("v = %d\n", v);
8 end
9 with

10 loop do // 2nd trail
11 await RESET;
12 v = 0;
13 end
14 end

Figure 1. Introductory example in CÉU.

cal scope and automatic memory management for both static and
dynamic instances, not relying on heap allocation at all.

The rest of the paper is organized as follows: Section 2 presents
SSRP through CÉU, with its underlying synchronous concurrency
model and parallel compositions. Section 3 describes the organisms
abstraction with static and dynamic instantiation, lexical scope,
and automatic memory management. Section 4 demonstrates two
complete applications developed entirely with SSRP in CÉU: a
network protocol for sensor networks and a video game for tablets.
Section 5 discusses related work. Section 6 concludes the paper.

2. SSRP with Céu
CÉU is a concurrent language in which the lines of execution,
known as trails, react all together continuously and in synchronous
steps to external stimuli. The introductory example in Figure 1
defines an input event RESET (line 1), a shared variable v (line
2), and starts two trails with the par construct (lines 3-14): the
first (lines 4-8) increments variable v on every second and prints
its value on screen; the second (lines 10-13) resets v on every
external request to RESET. Programs in CÉU can access C libraries
of the underlying platform directly by prefixing symbols with an
underscore (e.g., printf(<...>), in line 7).

2.1 Synchronous concurrency
In CÉU, a program reacts to an occurring event completely before
handling the next. A reaction represents a logical instant in which
all trails awaiting the occurring event awake and execute, one after
the other, until they await again or terminate. During a reaction, the
environment is invariant and does not interrupt the running trails4.
If multiple trails react to the same event, the scheduler employs
lexical order to preserve determinism, i.e., the trail that appears
first in the source code executes first. To avoid infinite execution for
reactions, CÉU ensures that all loops contain await statements [30].

As a consequence of synchronous execution, all consecutive op-
erations to shared variable v in Figure 1 are atomic (until reaching
the next await) because reactions to events 1s and RESET can never
interrupt each other. In contrast, in asynchronous models with non-
deterministic scheduling, the occurrence of RESET could preempt
the first trail during an increment to v (line 6) and reset it (line 12)
before printing it (line 7), characterizing a race condition on the
variable. The example illustrates the (arguably simpler) reasoning
about concurrency under the synchronous execution model.

The synchronous model also empowers SP with an orthogo-
nal abortion construct that simplifies the composition of activities5.
The code that follows shows the par/or construct of CÉU which

4The actual implementation enqueues incoming input events to process
them in further reactions.

5We use the term activity to generically refer to a language’s unit of
execution (e.g., thread, actor, trail, etc.).

composes trails and rejoins when either of them terminates, prop-
erly aborting the other:

par/or do
<trail−1>

with
<trail−2>

end
<subsequent−code>

The par/or is regarded as orthogonal because the composed
trails do not know when and how they are aborted (i.e., abortion is
external to them). This is possible in synchronous languages due to
the accurate control of concurrent activities, i.e., in between every
reaction, the whole system is idle and consistent [6]. CÉU extends
orthogonal abortion to also work with activities that use stateful
resources from the environment (such as file and network handlers),
as we discuss in Section 2.2.

Abortion in asynchronous languages is challenging [6] because
the activity to be aborted might be on a inconsistent state (e.g.,
holding pending messages or locks). This way, the possible (un-
satisfactory) semantics for a hypothetical par/or are: either wait
for the activity to be consistent before rejoining, making the pro-
gram unresponsive to incoming events for an arbitrary time; or re-
join immediately and let the activity complete in the background,
which may cause race conditions with the subsequent code. In
fact, asynchronous languages do not provide effective abortion:
Java’s Thread.stop primitive has been deprecated [26]; pthread’s
pthread cancel does not guarantee immediate cancellation [2]; Er-
lang’s exit either enqueues a terminating message (which may take
time), or unconditionally terminates the process (regardless of its
state) [1]; and CSP only supports a composition operator that “ter-
minates when all of the combined processes terminate” [21]. As an
alternative, asynchronous activities typically agree on a common
protocol to abort each other (e.g., through shared state variables
or message passing), which increases coupling among them with
implementation details that are not directly related to the problem
specification.

2.2 Parallel compositions
In terms of control structures, SSRP basically extends SP with par-
allel compositions, allowing applications to handle multiple events
concurrently. CÉU provides three parallel constructs that vary on
how they rejoin: a par/and rejoins when all trails in parallel ter-
minate; a par/or rejoins when any trail in parallel terminates; a
par never rejoins (even if all trails in parallel terminate). The code
chunks that follow compare the par/and and par/or compositions
side by side:

loop do
par/and do

<...>
with

await 1s;
end

end

loop do
par/or do

<...>
with

await 1s;
end

end

The code <...> represents a complex operation with any degree
of nested compositions. In the par/and variation, the operation
repeats on intervals of at least one second because both sides must
terminate before re-entering the loop. In the par/or variation, if the
operation does not terminate within 1 second, it is restarted. These
SSRP archetypes represent, respectively, the sampling and timeout
patterns, which are typical of reactive applications.

The example in Figure 2 relies on hierarchical par/or and
par/and compositions to describe the state machine of a data col-
lection protocol for sensor networks [16, 30]. The input events
START, STOP, and RETRANSMIT (line 1) represent the external inter-
face of the protocol with a client application. The protocol enters

2 2014/10/10

1 input void START, STOP, RETRANSMIT;
2 loop do
3 await START;
4 par/or do
5 await STOP;
6 with
7 loop do
8 par/or do
9 await RETRANSMIT;

10 with
11 par/and do
12 await 1min;
13 with
14 <send−beacon−packet>
15 end
16 end
17 end
18 with
19 <...> // the rest of the protocol
20 end
21 end

Figure 2. Parallel compositions can describe complex state ma-
chines.

var pkt t buffer;
<fill−buffer−info>
send enqueue(&buffer);
await SENDACK;

var pkt t buffer;
<fill−buffer−info>
finalize

send enqueue(&buffer)
with

send dequeue(&buffer);
end
await SENDACK;

Figure 3. Finalization clauses safely release stateful resources.

the top-level loop and awaits the starting event (line 3). Once the
client application makes a start request, the protocol starts three
other trails: one monitors the stopping event (line 5); one periodi-
cally transmits a status packet (lines 7-17); and one handles the re-
maining functionality of the protocol (collapsed in line 19). The pe-
riodic transmission is another loop that starts two other trails (lines
8-16): one to handle an immediate retransmission request (line 9);
and one that actually transmits the status packet (lines 11-15). The
transmission (collapsed in line 14) is enclosed with a par/and that
takes at least one minute before looping, to avoid flooding the net-
work with packets. At any time, the client may request a retrans-
mission (line 9), which terminates the par/or (line 8), aborts the
ongoing transmission (line 14, if not idle), and restarts the loop
(line 7). The client may also request to stop the whole protocol at
any time (line 5), which terminates the outermost par/or (line 4)
and aborts the transmission and all composed trails. In this case,
the top-level loop restarts (line 2) and waits for the next request to
start the protocol (line 3), ignoring all other requests (as the proto-
col specifies). The example shows how parallel compositions can
describe complex state machines in a structured way, eliminating
the use of global state variables for this purpose [30].

2.3 Finalization
The CÉU compiler tracks the interaction of par/or compositions
with local variables and stateful C functions (e.g., device drivers)
in order to preserve safe orthogonal abortion of trails.

Consider the code in the left of Figure 3, which expands the
sending trail of Figure 2 (line 14). The buffer packet is a local
variable whose address is passed to function send enqueue. The
call enqueues the pointer in the radio driver, which holds it up to
the emission of SENDACK acknowledging the packet transmission.
In the meantime, the sending trail might be aborted by STOP or
RETRANSMIT requests (lines 5 and 9 in Figure 2), making the packet

buffer go out of scope, and leaving behind a dangling pointer in the
radio driver. CÉU refuses to compile programs like this and requires
finalization clauses to accompany stateful C calls [30]. The code in
the right of Figure 3 properly dequeues the packet when the block
of buffer goes out of scope, i.e., the finalization clause (after the
with) executes automatically on external abortion.

3. Organisms: SSRP abstractions
In SP, the typical abstraction mechanism is a procedure, which ab-
stracts a routine with a meaningful name that can be invoked multi-
ple times with different parameters. However, procedures were not
devised for continuous input, and cannot retain control across reac-
tions to the environment.

CÉU abstracts data and control into the single concept of organ-
isms. A class of organisms describes an interface and an execution
body. The interface exposes public variables, methods, and also in-
ternal events (exemplified later). The body can contain any valid
code in CÉU, including parallel compositions. When an organism
is instantiated, its body starts to execute in parallel with the pro-
gram. Organism instantiation can be either static or dynamic.

The example in Figure 4 introduces static organisms with three
code chunks:
CODE-1 blinks two LEDs with different frequencies in parallel

and terminates after 1 minute.
CODE-2 abstracts the blinking LEDs in an organism class and uses

two instances of it to reproduce the same behavior of CODE-1.
CODE-3 is the semantically equivalent expansion of the organisms

bodies, which resembles the original CODE-1.
In CODE-2, the Blink class (lines 1-9) exposes the pin and dt prop-
erties, corresponding to the LED I/O pin and the blinking period,
respectively. The application then creates two instances, specifying
those properties in the constructors (lines 12-15 and 17-20). Inside
constructors, the identifier this refers to the organism under instan-
tiation. The constructors automatically start the organisms bodies
(lines 5-8) to run in parallel in the background, i.e., both instances
are already running before the await 1min (line 22).

CODE-3 is semantically equivalent to CODE-2, but with the or-
ganism constructors and bodies expanded (lines 10-17 and 19-26).
The generated par/or (lines 9-29) makes the instances concurrent
with the rest of the application (in this example, the await 1min
in line 28). Note the generated await FOREVER statements (lines 17
and 26) to avoid the organisms bodies to terminate the par/or. The
Blink type (lines 1-4) corresponds to a simple datatype without

an execution body. The actual implementation of CÉU does not ex-
pand the organisms bodies like in CODE-3; instead, a class gener-
ates a single code for its body, which is shared by all instances (in
the same way as objects share class methods).

The main distinction from organisms to standard objects is how
organisms can react independently and directly to the environment.
For instance, organisms need not be included in observer lists for
events, or rely on the main program to feed their methods with input
from the environment. Although the organisms run independently
from the main program, they are still subject to the disciplined
synchronous model, which keeps the whole system deterministic,
as the equivalent expansion of CODE-3 suggests (and based on
lexical scheduling described in Section 2.1).

The memory model for organisms is similar to stack-living local
variables of procedures in SP, featuring lexical scope and automatic
management. Note that CODE-2 uses a do-end block (lines 11-
23) that limits the scope of the organisms for 1 minute (line 22).
During that period, the organisms are accessible (through b1 and
b2) and reactive to the environment (i.e., blinking continuously).
After that period, the organisms go out of scope and, not only they
become inaccessible, but their bodies are automatically aborted, as
the expansion of CODE-3 makes clear: The par/or (lines 9-29)

3 2014/10/10

par/or do
loop do

await 500ms;
toggle(11);

end
with

loop do
await 1s;
toggle(12);

end
with

await 1min;
end

CODE-1: original blinking

1 class Blink with
2 var int pin;
3 var int dt;
4 do
5 loop do
6 await (this.dt)ms;
7 toggle(this.pin);
8 end
9 end

10

11 do
12 var Blink b1 with
13 this.pin = 11;
14 this.dt = 500;
15 end;
16

17 var Blink b2 with
18 this.pin = 12;
19 this.dt = 1000;
20 end;
21

22 await 1min;
23 end

CODE-2: blinking organisms

1 struct Blink with
2 var int pin;
3 var int dt;
4 end;
5

6 do
7 var Blink b1, b2;
8

9 par/or do
10 // body of b1
11 b1.pin = 11;
12 b1.dt = 500;
13 loop do
14 await (b1.dt)ms;
15 toggle(b1.pin);
16 end
17 await FOREVER;
18 with
19 // body of b2
20 b2.pin = 12;
21 b2.dt = 1000;
22 loop do
23 await (b2.dt)ms;
24 toggle(b2.pin);
25 end
26 await FOREVER;
27 with
28 await 1min;
29 end
30 end

CODE-3: organisms expansion

Figure 4. Two blinking LEDs using organisms.

aborts the organisms bodies after 1 minute (line 28), just before
they go out of scope (line 30). The par/or termination properly
triggers all active finalization clauses inside the organism bodies (if
any), as discussed in Section 2.3. Lexical scope extends the idea of
orthogonal abortion to organisms, as they are automatically aborted
when going out of scope. In this sense, organisms are more than a
cosmetic convenience for programmers because they tie together
data and associated execution into the same scope.

In addition to properties and methods, organisms also expose
internal events which support await and emit operations. In the
example in Figure 5, the class Unit (lines 1-16) defines the position
and destination properties pos and dst (lines 2-3), and the event
move to listen for requests to move the unit position (line 4). The
main program (lines 18-24) creates two units, requesting the first
to move immediately to dst=300, and the second to move after 1
second to position 500. On instantiation, the organism body enters
a continuous loop (lines 6-15) to handle move requests (line 8)
while performing the ongoing moving operation (lines 10-13) in
parallel. The par/or (lines 7-14) restarts the loop for every move
request which updates the dst position. The moving operation
(collapsed in line 11) can be as complex as needed, for example,
using another loop to apply physics over time. The await FOREVER
(line 13) halts the trail after the move completes to avoid restarting
the outer loop. An advantage of event handling over method calls
is that they can be composed in the organism body to affect other
ongoing operations. In the example, the await move (line 8) aborts
and restarts the moving operation, just like the timeout pattern of
Section 2.2.

3.1 Dynamic organisms
Static embedded systems typically manipulate hardware with a
one-to-one correspondence in software, i.e., a static piece of soft-
ware deals with a corresponding piece of hardware (e.g., a sensor
or actuator). In contrast, more general reactive systems have to deal
with resource virtualization that requires dynamic allocation, such

1 class Unit with
2 var int pos = 0;
3 var int dst = 0;
4 event int move;
5 do
6 loop do
7 par/or do
8 dst = await this.move;
9 with

10 if dst != pos then
11 <code−to−move−pos−to−dst>
12 end
13 await FOREVER;
14 end
15 end
16 end
17

18 var Unit u1 with
19 this.dst = 300;
20 end
21

22 var Unit u2;
23 await 1s;
24 emit u2.move => 500;

Figure 5. Organism manipulation through events.

as multiplexing protocols in a network, or simulating entire civi-
lizations in a game. Dynamic allocation for organisms extends the
power of SSRP to handle virtual resources in reactive applications.

CÉU supports dynamic instantiation of organisms through the
spawn primitive. The example that follows spawns a new instance
of Unit (previously defined in Figure 5) on every second and moves
it to a random position:

loop do
await 1s;
spawn Unit with

this.pos = rand() % 500;
this.dst = rand() % 500;

end;
end

4 2014/10/10

Dynamic instances also execute in parallel with the rest of the
application, but have different lifetime and scoping rules then static
ones: A static instance has an identifier and a well-defined scope
that holds its memory resources; A dynamic instance is anonymous
and outlives the scope that spawns it. In the example, the spawned
units outlive the enclosing loop iterations. Due to the lack of an
explicit identifier or reference, a dynamic instance can control
its own lifetime: once its body terminates, a dynamic organism
is automatically freed from memory. This does not apply for a
static instance because its memory is statically preallocated and its
identifier is still accessible even if its body terminates.

The code that follows redefines the body of the Unit class of
Figure 5 to terminate after 1 hour, imposing a maximum life span
in which a unit can react to move requests. After that, the body
terminates and the organism is automatically freed (if dynamically
spawned):

class Unit with
<...> // interface

do
par/or do

<...> // moving trail
with

await 1h;
end

end

The lack of scopes for dynamic organisms prevents orthogonal
abortion, given that there is no way to externally abort the execu-
tion of a dynamic instance. To address orthogonal abortion, CÉU
provides lexically scoped pools as containers that hold dynamic in-
stances of organisms. The example that follows declares the units
pool to hold a maximum of 10 instances (line 3):

1 input void CLICK;
2 do
3 pool Unit[10] units;
4 par/or do
5 loop do
6 await 1s;
7 spawn Unit in units with
8 <...> // constructor
9 end;

10 end
11 with
12 await CLICK;
13 end
14 end

A new unit is spawned in the pool once a second (note the in
units, in line 7). Once the application receives a CLICK (line 12),
the par/or (line 4) terminates, making the units pool to go out of
scope and abort/free all units alive.

Pools with bounded dimension (e.g., pool Unit[10] units;),
have static pre-allocation, resulting in efficient and deterministic
organism instantiation. This opens the possibility for dynamic be-
havior also in constrained embedded systems. If a pool does not
specify a dimension (e.g., pool Unit[] units;), the instances go
to the heap but are still subject to the pool scope. If a spawn does
not specify a pool (e.g., spawn Unit;), the instances go to a prede-
fined dimension-less pool in the top of the current class (and are
still subject to that pool scope).

Support for lexical scope for both static and dynamic organisms
eliminate garbage collection, free primitives, and memory leaks
altogether.

3.2 Pointer and references
As organisms react independently to the environment, it is often
not necessary to manipulate pointers to them. Nonetheless, a spawn
allocation returns a pointer to the new organism, which can be later
dereferenced with the operator ‘:’ (analogous to ‘->’ of C/C++):

var Unit∗ ptr = spawn Unit;
ptr:pos = 0;
watching ptr do

await 2h;
emit ptr:move => 100;

end

var Unit∗ ptr = spawn Unit;
ptr:pos = 0;
par/or do

await ptr: killed;
with

await 2h
emit ptr:move => 100;

end

Figure 6. Watching an organism pointer (in the left) and the equiv-
alent expansion (in the right).

var Unit∗ ptr = spawn Unit;
ptr:pos = 0; // this access is safe
await 2h;
emit ptr:move => 100; // this access is unsafe

Pointers can be dangerous because they may last longer than
the organisms to which they refer. The code above first acquires
a pointer ptr to a Unit. Then, it dereferences the pointer in two
occasions: in the same reaction, just after acquiring the pointer; and
in another reaction, after 2h, when the pointed organism may have
already terminated and been freed, leading to unspecified behavior
in the program.

As a protection against dangling pointers, CÉU enforces all
pointer accesses across reactions to use the watching construct
which supervises organism termination, as illustrated in the left of
Figure 6. The whole watching construct aborts whenever the re-
ferred organism terminates, eliminating possible dangling pointers
in the program. The code in the right shows the equivalent expan-
sion of the watching construct into a par/or that awaits the special
event killed (which all classes manage internally).

CÉU also refuses to assign the address of an organism to a
pointer of greater scope, as illustrated below:
var Unit∗ ptr;
do

var Unit u;
ptr = &u; // illegal attribution

end
ptr:pos = 0; // unsafe access ("u" went out of scope)

A more typical use of pointers to organisms is inside a pool iter-
ator which acquire temporary pointers to all of its alive instances.
To preserve pointer accesses safe, iterators cannot await. The exam-
ple that follows iterates over the units pool to check for collision
among units:
pool Unit[10] units;
<...>
loop (Unit∗)u1 in units do

loop (Unit∗)u2 in units do
if <check−collision−u1−vs−u2> then

emit u1:move => rand() % 500;
emit u2:move => rand() % 500;

end
end

end

CÉU also provides references as a safer alternative to pointers.
Unlike pointer attributions, references can only be associated to
static organisms of (at least) the same scope. This way, references
are guaranteed to be always valid and do not require watching
supervision. Like in C++, references cannot be reassigned and, as
simple aliases, they use the member operator ‘.’ directly (instead
of the dereference operator ‘:’):
var Unit& ref;
var Unit u1;
do

var Unit u2;
ref = u2; // illegal (scope of u2 < ref)

end
ref = u1 // legal (scope of u1 >= ref)
ref.pos = 0; // affects u1

5 2014/10/10

1 interface IUnit with
2 var int pos;
3 var int dst;
4 event int move;
5 end
6

7 class Archer with
8 interface IUnit;
9 <...> // other interfaces

10 do
11 <...> // execution body
12 end
13

14 class Knight with
15 interface IUnit;
16 <...> // other interfaces
17 do
18 <...> // execution body
19 end
20

21 pool IUnit[] units;
22 <...>
23 spawn Archer in units;
24 spawn Knight in units;
25 <...>
26 loop (IUnit∗)u in units do
27 emit u:move => rand() % 500;
28 end

Figure 7. Organism manipulation through abstract interfaces.

3.3 Abstract interfaces
In order to allow multiple classes with similar interfaces to co-
operate, CÉU provides abstract interfaces similar to Java interfaces.
Like classes, abstract interfaces declare public variables, method
signatures, and internal events; but unlike classes, they do not
define an execution body.

The code in Figure 7 declares the IUnit interface (lines 1-5) and
the classes Archer and Knight that implement it (lines 7-12 and
14-19, respectively). Each concrete class may expose additional
fields and implement other abstract interfaces (hidden in lines 9
and 16). The body implementation for knights and archers are
presumably different (hidden in lines 11 and 18), with particular
moving animations, attacking behavior, etc. The main program
defines an unbounded pool of IUnit instances (line 21), which is
further populated with archers and knights (lines 23-24). At some
point, the pool is traversed and moves all units to random positions
(lines 26-28), each respecting its actual implementation.

Interfaces are always manipulated through pointers and are also
subjected to the pointer analysis described in Section 3.2.

4. Applications
We present two complete applications in different domains and
platforms to argue that SSRP in CÉU can be generally adopted
in the context of reactive systems. The examples combine all dis-
cussed functionality to build complete reactive applications in a
structured way.

The first application is a simple network protocol for wireless
sensor networks (WSNs). We integrated CÉU with the TinyOS
operating system [20] which targets highly constrained ATmega
embedded platforms6 (e.g., 8-bit CPU with 4Kb of SRAM).

The second application is a casual two-player game for tablets
published in the “Google Play” store7. In this case, we use the

6ATmega micro-controllers: http://www.atmel.com/products/
microcontrollers/avr/megaavr.aspx

7The ”Rocks!” game: https://play.google.com/store/apps/
details?id=org.droid_in_the_sky.rocks

multi-platform SDL graphics library8 targeting Android devices
with extensive memory and CPU power.

Each platform provides an environment with different input
sources (e.g., radio transceivers and touch screens), which are ex-
posed as input events to the program. Regardless of the capabilities
gap between the platforms, we use the same programming tech-
niques in the examples, such as dynamic organisms and deep nest-
ing of parallel compositions.

4.1 Source Routing Protocol
The Source Routing Protocol for WSNs [32] delivers packets from
an origin to a destination node. The protocol stores the routing path
in the packet itself, as a vector of node addresses to traverse in
sequence. Each hop in the path forwards the packet to the next
address in the vector up to the final destination node. All nodes in
the network may play the role of clients and forwarders at the same
time: a client periodically sends a packet to a destination node;
a forwarder listen for an incoming packet from other nodes and
forward it to the next node in the path. A node has a single radio
interface shared by all of its active roles.

TinyOS offers an event-driven API that relies on short-lived
callbacks to keep nodes responsive, sharing the same limita-
tions with the observer pattern: “all long-latency operations are
split-phase: operation request and completion are separate func-
tions” [15]. This way, the original protocol implementation keeps
the state of active clients and forwarders in static- or heap-living
globals to be accessible across separate functions in split-phase
operations (e.g., timer request and expiration). Clients are defined
statically in a global vector, while forwarders are dynamically allo-
cated in the heap to adapt to the network traffic.

The implementation in CÉU takes advantage of SSRP and over-
comes split-phase operations with simple sequential flow separated
by await statements. It uses static organisms for clients and a dy-
namic pool for forwarders to behave like the original implemen-
tation. The file main.ceu in Figure 8 shows the main body for the
protocol in CÉU. The Forwarder and Client classes are included in
lines 6-7 and expanded in the right of the figure.

The input events START and STOP (lines 1-2 of main.ceu) control
the global state of the protocol (similarly to example of Figure 2):
the top-level loop awaits the starting event (line 10) and, on request,
“watches” the stopping event (line 11) while executing the protocol
(lines 12-25). The watching construct (described in Figure 9.1)
aborts its nested block on the occurrence of the referred event (and
is more idiomatic than the equivalent expansion to a par/or). At
any time, a request to stop the protocol aborts all active clients and
forwarders, restarts the loop (line 9), and waits for the next request
to start (line 10).

The input events RECEIVE and SENDACK (lines 3-4) represent the
interface with the radio driver: RECEIVE notifies the program of an
incoming packet (carrying a pointer to it); SENDACK acknowledges
that a previous call to send enqueue, which requests a packet trans-
mission, has completed (carrying its identifying pointer).

The core of the protocol (lines 12-25) first declares a pool of
forwarders and a vector of clients (line 12-13). The identifier ‘ ’ for
static instances makes them anonymous, which is recommended for
organisms that the application does not manipulate directly: each
client in the vector executes independently in parallel, frequently
sending packets to other nodes in the network. The protocol then
enters the every construct (described in Figure 9.2) to receive in-
coming packets continuously and take the proper action as they ar-
rive (lines 15-25): if the packet has no hops left, it reached the des-
tination and the protocol calls the user-defined function receive
to handle the packet (lines 17-18); otherwise, the protocol sets the

8The SDL library: http://www.libsdl.org

6 2014/10/10

1 input void START;
2 input void STOP;
3 input pkt t∗ RECEIVE;
4 input pkt t∗ SENDACK;
5

6 #include "forwarder.ceu"
7 #include "client.ceu"
8

9 loop do
10 await START;
11 watching STOP do
12 pool Forwarder[N FWDS] forwarders;
13 var Client [N CLTS] ;
14

15 var pkt t∗ inc;
16 every inc in RECEIVE do
17 if inc:hopsLeft == 0 then
18 receive(inc);
19 else
20 pkt setNextHop(inc);
21 spawn Forwarder with
22 memcpy(&this.out, inc, inc:len);
23 end
24 end
25 end
26 end
27 end

File ”main.ceu”

1 class Forwarder with
2 var pkt t out;
3 event void ok;
4 do
5 loop do
6 var bool enq;
7 finalize
8 enq = send enqueue(&this.out)
9 with

10 send dequeue(&this.out);
11 end
12 if not enq then
13 await 50ms;
14 continue;
15 end
16 var pkt t∗ done = await SENDACK
17 until (done == &this.out);
18 emit this.ok;
19 break;
20 end
21 end

File ”forwarder.ceu”

1 #include "forwarder.ceu"
2

3 class Client with
4 do
5 loop seqno do
6 par/and do
7 await 1min;
8 with
9 do Forwarder with

10 pkt set(&this.out, seqno);
11 end
12 end
13 end
14 end

File ”client.ceu”

Figure 8. The Source Routing Protocol in CÉU.

next hop (line 20) and spawns a new forwarder to re-transmit the
packet (lines 21-23). Note that multiple forwarders may coexist if
incoming packets arrive faster than their re-transmissions.

The file forwarder.ceu in Figure 8 defines the Forwarder class
which exposes the packet out to transmit, and the event ok to signal
its completion (lines 2-3). The class body is a loop that lasts until
the packet is successfully transmitted (lines 5-20): the enqueue
operation is properly finalized with a corresponding dequeue (lines
7-11, as described in Section 2.3); if the queue is full, the forwarder
waits for a short period and restarts the loop to retry (lines 12-
15); otherwise, the body awaits until the radio driver acknowledges
the transmission of the enqueued packet (done==&out in lines 16-
17), signals the completion to potential listeners through the event
ok (line 18, discussed further), and escapes the loop to terminate
(line 19). The await-until construct (described in Figure 9.3)
expands to a loop that checks every occurrence of the referred
event, escaping when the condition is met. Note that for forwarders
spawned in the main body (line 21 in main.ceu), the organism
termination automatically frees it from memory, as discussed in
Section 3.1.

The file client.ceu in Figure 8 defines the Client class with an
empty interface, meaning that it does not depend on data from the
main body. The class body (lines 5-13) is an infinite loop that sends
a new packet every minute. The loop automatic variable seqno (line
5), which starts at 0 and is incremented on each loop iteration,
represents the packet sequence number. The par/and (lines 6-12)
restricts the loop iteration to occur at least once every minute, just
like the sampling pattern of Section 2.2. To send a new packet,
the body embeds a Forward organism and sets the contents of the

out packet to depend on the current sequence number and a user-
defined function (lines 9-11). The do-<class> construct (described
in Figure 9.4) expands to a static organism declaration that awaits
its own termination. The expansion expects the organism interface
to define the event ok and the body to emit it on completion (e.g.,
that the transmission succeeded). The expansion is enclosed with
an explicit do-end block to make the organism to go out of scope
after the await ok, and proceed to the statement in sequence.

The Forwarder and Client classes illustrate how SSRP can
break programs into modules that encapsulate, at the same time,
data and execution control (e.g., message buffers and associated
transmission activities). These modules are then instantiated inside
the main execution body in a deliberate depth that restricts their
scope. For instance, at any time, a STOP request terminates the
wacthing construct (lines 11-26 of main.ceu) and aborts all clients
and forwarders. In spite of being defined in separate files, possibly
by different developers, all clients and forwarders are automatically
finalized to a consistent state (lines 7-11 of forwarder.ceu).

The example also shows how organisms can nest to avoid
code duplication: To forward a packet, the Client class “calls” a
Forwarder organism (lines 9-11 of client.ceu) that behaves like a
“reactive subroutine”.

In the protocol, the radio driver is subjected to a high degree
of concurrency, with incoming packets to the node, requests from
local clients, and forwarders routing data through the network.
However, the execution model of CÉU synchronizes all reactions
to radio events and eliminates race conditions by design, such as
on calls to side-effect functions receive and send enqueue (line
18 of main.ceu and line 8 of forwarder.ceu, respectively).

7 2014/10/10

1 // a "watching"
2 watching <evt> do
3 <...>
4 end
5

6 // expands to a "par/or"
7 par/or do
8 await <evt>;
9 with

10 <...>
11 end

(1) A watching expands to a par/or.

1 // an "every"
2 every v in <evt> do
3 <...>
4 end
5

6 // expands to a loop
7 loop do
8 v = await <evt>;
9 <...>

10 end

(2) An every expands to a loop.

1 // an "await−until"
2 v = await <evt>
3 until <condition−that−may−use−"v">;
4

5 // expands to a loop to meet the condition
6 loop do
7 v = await <evt>;
8 if <condition−that−may−use−"v"> then
9 break;

10 end
11 end

(3) An await-until expands to a loop to meet the condition.

1 // a "do−class"
2 do <Class> with
3 <...>
4 end
5

6 // expands to a "do−end"+instantiation+"await ok"
7 do
8 var <Class> org with
9 <...>

10 end
11 await org.ok; // <Class> must implement and emit
12 end // the event "ok"

(4) A do-<class> waits for the organism to terminate.

Figure 9. Syntactic sugars to describe typical control patterns in
SSRP.
4.2 The ”Rocks” game
The ”Rocks!” game of Figure 10 is a spaceship shooter that two
opponents play simultaneously on the same tablet. Each player
controls a spaceship by swiping and tapping different areas of the
screen: a swipe changes the ship acceleration to follow it; a tap
fires in the direction of the opponent. At random periods, a new
meteor enters the screen and moves to a random position. If a ship
collides with a meteor or an opponent shot, it explodes and the
game restarts. The scores on the bottom of the screen show the
opponents’ number of deaths.

The game is considerably more complex than the protocol of
Section 4.1, so we generally describe the abstract interfaces and
focus on the top-level block which puts all pieces together. Fig-
ure 11 shows the relevant parts of the main file. The game inter-
acts with 4 input events (lines 1-4): SDL QUIT requests the appli-
cation to terminate (e.g., user closes the game window); SDL DT,
which is the source of all animations, is emitted on every frame

Figure 10. Screenshots for the game ”Rocks!”: starting screen and
gameplay with the player controls highlighted.

passing the number of milliseconds elapsed since the previous
frame; SDL REDRAW requests screen updates and is also emitted on
every frame; SDL TOUCH signals screen touch events (i.e., tapping
and swiping). The interfaces (lines 6-27), with implementations in-
cluded in corresponding files (lines 29-32), represent the abstract
concepts that the main program manipulates:
IScore (lines 6-9) represents the player scores, expecting a
position in the screen (line 7), and exposing the event
go increment which the application emits to increment the
score (line 8). The actual implementation holds the score cur-
rent state (e.g., points and graphical texture) and knows how to
redraw itself on screen in reactions to SDL REDRAW.

IController (lines 11-14) represents the player controllers, expos-
ing the current acceleration ax/ay charged to the ship (line 12),
and emitting ok shoot9 events which the application awaits to
spawn new shots (line 13). The actual implementation updates
the acceleration according to reactions to the relevant SDL TOUCH
inputs.

ICollidable (lines 16-20) represents all objects that require colli-
sion detection: the ships, shots, and meteors. The field id (line
17) identifies the object when applying collisions (e.g., colli-
sions between two meteors are ignored). The field rect (line
18) exposes the current position and dimension for collision de-
tection. The application emits the go hit event to signal that the
object has collided (line 19).

IShip (lines 22-27) represents the ships and extends the
ICollidable interface (line 23). A ship expects a controller
reference (line 24) and holds a pool of 3 shots (line 25, de-
scribed further). It also emits the event ok destroyed after dye-
ing (line 26).

9The prefixes go and ok for internal events informally represent
direction: the application emits go events to interfaces, and awaits ok events
emitted from them.

8 2014/10/10

1 input void SDL QUIT;
2 input int SDL DT;
3 input void SDL REDRAW;
4 input SDL TouchFingerEvent∗ SDL TOUCH;
5

6 interface IScore with
7 var SDL Point position;
8 event void go increment;
9 end

10

11 interface IController with
12 var float ax, ay;
13 event void ok shoot;
14 end
15

16 interface ICollidable with
17 var int id;
18 var SDL Rect rect;
19 event void go hit;
20 end
21

22 interface IShip with
23 interface ICollidable;
24 var IController& controller;
25 pool Shots[3] shots;
26 event void ok destroyed;
27 end
28

29 #include "scores.ceu"
30 #include "controllers.ceu"
31 #include "collidables.ceu"
32 #include "ship.ceu"
33

34 par/or do
35 await SDL QUIT;
36 with
37 every SDL REDRAW do
38 SDL RenderCopy(<bg−image>,<center>);
39 end
40 with
41 var Score score1 with
42 this.position = <bottom−right>;
43 end
44 var Score score2 with
45 this.position = <bottom−left>;
46 end
47

48 loop do
49 do
50 <...> // "TAP TO START" message
51 end
52 do
53 <...> // gameplay with ships & meteors
54 end
55 end
56 with
57 every SDL REDRAW do
58 SDL RenderPresent(<...>);
59 end
60 end

Figure 11. File ”main.ceu” with the top-level block of the game.

The body of the game is a par/or (lines 34-60) that terminates
on a SDL QUIT request (line 35). Reactions to SDL REDRAW relies on
deterministic scheduling respecting the lexical order of trails: first,
the trail in lines 37-39 redraws the background; then, all organisms
inside the trail in lines 41-55 have the chance to redraw themselves
(i.e., scores, ships, etc.); finally, the trail in lines 57-59 updates the
screen.

The core of the game resides in the trail in lines 41-55. We
first instantiate the scores as static organisms that survive the whole
game (lines 41-46). Then, we switch between the starting tap and
gameplay behaviors of Figure 10, putting them in sequence and
surrounded with loop (lines 48-55). The do-end enclosing each
behavior isolates one from another, i.e., no variables or organisms
should survive when switching between them.

1 watching SDL TOUCH do
2 loop do
3 await 500ms; // message off
4 watching 500ms do // message on
5 every SDL REDRAW do
6 SDL RenderCopy(<tap−msg>,<center>);
7 end
8 end
9 end

10 end

Figure 12. The starting tap behavior in ”main.ceu”.

1 var TouchController controller1 with
2 this.move region = <swipe−region−1>;
3 this.fire region = <tap−region−1>;
4 end
5 var TouchController controller2 with
6 this.move region = <swipe−region−2>;
7 this.fire region = <tap−region−2>;
8 end
9

10 var Ship ship1 with
11 this.id = SHIP1;
12 this.rect = <pos−dim−1>;
13 this.controller = controller1;
14 end
15 var Ship ship2 with
16 this.id = SHIP2;
17 this.rect = <pos−dim−2>;
18 this.controller = controller2;
19 end
20

21 pool Meteor[] meteors; // Meteor in collidables.ceu
22

23 par/or do
24 every (1000 + rand()%2000)ms do
25 spawn Meteor in meteors;
26 end
27 with
28 every SDL DT do
29 loop (ICollidable∗) c1 in <all> do
30 loop (ICollidable∗) c2 in <all> do
31 if collides(c1,c2) and
32 enemies(c1,c2) then
33 emit c1:go hit;
34 emit c2:go hit;
35 end
36 end
37 end
38 end
39 with
40 await ship1.ok destroyed;
41 emit points2.go inc;
42 with
43 await ship2.ok destroyed;
44 emit points1.go inc;
45 end

Figure 13. The gameplay behavior in ”main.ceu”.

The behavior for the starting tap, expanded in Figure 12, is
to blink the “TAP TO START” message until the user taps the
screen. The watching composition terminates on the occurrence
of SDL TOUCH (line 1), switching to the gameplay (lines 52-54 of
Figure 11). In the meantime, the loop (lines 2-9) blinks the text on
screen by alternating between an idle period of 500ms (line 3), and
a displaying period of 500ms (lines 4-8).

The code for the gameplay is expanded in Figure 13. First,
we declare the two controller organisms (lines 1-8), passing the
move and fire regions in which they operate inside the screen (as
illustrated in Figure 10). After the declarations, each controller
body reacts to SDL TOUCH swipe and tap events to either update
its ax and ay fields, or emit ok fired events to the application, as
specified by the IController interface. Then, we declare the two

9 2014/10/10

1 class Ship with
2 <...> // see IShip
3 do
4 par/or do
5 var int hits = 3;
6 every this.go hit do
7 hits = hits − 1;
8 if hits == 0 then
9 break;

10 end
11 end
12 with
13 every this.controller.ok fired do
14 spawn Shot in this.shots with
15 <...> // direction, speed
16 end
17 end
18 with
19 var float vx = 0;
20 var float vy = 0;
21 var int dt;
22 every dt in SDL DT do
23 vx = vx + this.controller.ax∗dt;
24 vy = vy + this.controller.ay∗dt;
25 this.rect.x = this.rect.x + vx∗dt/1000;
26 this.rect.y = this.rect.y + vy∗dt/1000;
27 end
28 with
29 every SDL REDRAW do
30 SDL RenderCopy(<image>,<pos>);
31 end
32 end
33 emit ok destroyed;
34 end

Figure 14. The Ship class in ”ship.ceu”.

ship organisms (lines 10-19), specifying the collision identifiers,
starting position and dimensions, and controllers for each ship. A
ship knows how to move according to SDL DT frame events and
its controller acceleration, as well as to redraw itself on screen on
every SDL REDRAW request. New meteors are spawned at most every
2 seconds (lines 24-26) and reside in a dedicated pool (line 21). The
meteors move to random positions and terminate themselves when
leaving the screen, being automatically removed from the pool.
On every frame, we check for collision between all ICollidable
organisms in the game, two by two, including all meteors, ships,
and shots (lines 28-38)10: we compare their rect and id fields
(inside collides and enemies calls in lines 31-32) and, if it is the
case, we signal both instances that they have collided (lines 33-
34). The gameplay terminates when either of the ships signal its
destruction (line 40 or 43). In this case, the program increments
the enemy points (line 41 or 44) and aborts the whole par/or,
switching back to the starting tap behavior.

Remind that a do-end encloses the gameplay behavior and iso-
lates its state from the starting tap behavior (lines 52-54 of Fig-
ure 11), making the controllers, ships, shots, and all meteors to go
out of scope. However, the Score organisms have a broader scope
and persist for the whole game session (lines 41-46 of Figure 11).

The code for the Ship class is presented in Figure 14. A ship
has to be inflicted 3 hit points to be destroyed (lines 5-11). Once
this happens, the enclosing par/or terminates (lines 4-32) and
emits the ok destroyed event to the application (line 33), which
makes the gameplay to also terminate (lines 40-44 of Figure 13).
Whenever the controller senses a tap and emits the ok fired event
(lines 13-17), the ship spawns a new Shot organism in the direction
of the opponent. The pool of shots can only hold 3 simultaneous

10The real code (which is considerable more complex in this case)
avoids comparing each pair twice and uses a temporary helper vector to
hold all static and dynamic ICollidables in the same structure (illustrated
by the <all> placeholder in lines 29-30).

1 class Missile with
2 var Meteor∗ to follow; // closest meteor
3 <...>
4 do
5 par/or do
6 watching this.to follow do
7 every SDL DT do
8 if rect.y > to follow:rect.y then
9 this.ay = −0.1;

10 else
11 this.ay = 0.1;
12 end
13 end
14 end
15 with
16 <...> // missile moving, redrawing, etc
17 end
18 end

Figure 15. The guided missile watches a pointer to a meteor.

instances, meaning that further spawn invocations fail until one of
the shots leaves the screen (forcing the player to fire wisely). For
the ship movement (lines 19-27), we integrate its position with
respect to the dt “delta time” acquired every frame, also taking
into account the current controller acceleration. Finally, we redraw
the ship image in its current position for every SDL REDRAW request
(lines 29-31).

The complete game is below 500 lines of code and includes
sound effects, explosions, power-up bonuses, guided missiles, in-
dicative bars for hit points and available shots, among other fea-
tures. For the guided missiles, for instance, we use the watching
construct to track the closest meteor that approaches the ship, as
the code in Figure 15 shows. The guided missile adjusts its accel-
eration on every frame (lines 7-13), based on the target position.
If the supervised meteor disappears (or is destroyed), the watching
construct terminates (lines 6-14) and aborts the par/or (lines 5-17),
making the guided missile to self-destruct.

4.3 Discussion
SSRP and CÉU rely on control compositions to express program
flow concisely and in a structured way. In contrast, solutions based
on the observer pattern rely on explicit manipulation of global vari-
ables and state machines for flow control across reactions. The
presented applications express all control patterns exclusively with
hierarchical compositions of activities and organisms, corroborat-
ing our previous experiments towards the eradication of state vari-
ables [30], In addition, control compositions enable the conception
of new higher-level self-contained constructs, such as the syntactic
sugars of Figure 9 used in the applications.

Organisms are fundamental to expand SSRP to the development
of more complex systems. Organisms tie data and control together
to form abstractions that can be deployed deliberately to a limited
scope in applications. In the protocol, the Forwarder and Client
classes are defined in separate and applied to a restricted scope that
does not mingle with the rest of the code. Furthermore, the example
uses anonymous (static and dynamic) instances that are completely
autonomous and do not require explicit manipulation from the main
program. Finally, requests to stop the protocol trigger orthogonal
abortion and finalization for all clients and forwarders, leaving the
memory in a consistent state.

The distinction between static and dynamic organisms reflects
more precisely the life cycle of each component in an applica-
tion. In the game, the two ships are declared static because they
are alive during the whole scope of the gameplay; the meteors, in
contrast, are declared dynamic because they terminate when disap-
pearing from the screen, which is a runtime condition. Nonetheless
dynamic instances must still reside in static pools, also restricting
them to a maximum lexical scope. Even though this distinction ex-

10 2014/10/10

ists in O.O. languages like C++, it does not apply effectively be-
cause the dependency in short-lived callbacks for reactive applica-
tions require all allocations to be dynamic in practice.

Static scopes helps developers to better understand the overall
state of memory in applications: blocks in parallel coexist in mem-
ory; blocks in sequence do not; static organisms and pools coexist
with their enclosing block. This information is more difficult to in-
fer when deallocation is explicit or relies on garbage collection,
because both cases depend on runtime behavior that cannot be ana-
lyzed statically. In the protocol, after a stop request, it is guaranteed
that no forwarders or clients are in memory. In the game, the mem-
ory for the starting screen and gameplay can never coexist because
they are enclosed by blocks in sequence.

Explicit reference manipulation may introduce memory leaks
even in garbage collected languages [19]. For instance, a lapsed lis-
tener [25] is a pointer to an object—supposedly unreferred—that is
not explicitly unregistered as a listener from an event, preventing
the garbage collector to release the object from memory. When ab-
solutely necessary, explicit manipulation in CÉU must be protected
with the watching construct, which ensures that pointers to organ-
isms do not hold them in memory. In the game, the code for the
guided missile that manipulates a reference to the closest meteor is
automatically aborted when the latter goes out of scope.

5. Related work
Simula is a simulation language that introduced the concepts of
objects and coroutines [13]. The syntactic structure of classes in
Simula is very similar to CÉU, exposing an interface that encapsu-
lates an execution body. However, the underlying execution models
are fundamentally distinct: CÉU employs a reactive scheduler to re-
sume trails based on external stimuli, while Simula relies on coop-
eration (i.e., detach and resume calls, at the lowest level). Simula
has no notion of compositions, with each object having a single
line of execution. In particular, the lack of a par/or precludes or-
thogonal abortion and many derived CÉU features, such as lexically
scoped organisms, finalization, and reference watching. Without
scopes, Simula objects have to live on the heap and rely on garbage
collection.

Some previous work extend Esterel to provide dynamic syn-
chronous abstractions [9–11]. In particular, ReactiveML [23] is a
functional variant of Esterel with rich dynamic synchronous ab-
stractions through processes. However, these languages rely on
heap allocation and/or garbage collection and may not be suitable
for constrained embedded systems. They also lack a finalization
mechanism that hinders proper orthogonal abortion in the presence
of stateful resources.

Finally, the main distinction to existing work is how CÉU incor-
porates to SSRP the fundamental concept in SP of lexically scoped
variables. All constructs of CÉU have a clear and unambiguous
lifespan that can be inferred statically from the source code. Lexi-
cal scope permeates all aspects of the language: Any piece of data
or control structure has a well-defined scope that can be abstracted
as an organism and safely aborted through finalization. Even dy-
namic instances of organisms reside in scoped pools with the same
properties.

Functional Reactive Programming [34] contrasts with SSRP as
a complementary programming style for reactive applications. We
believe that FRP is more suitable for data-intensive applications,
while SSRP, for control-intensive applications. On the one hand,
FRP uses declarative formulas to specify continuous functions over
time, such as for physics or data constraints among entities, while
SSRP requires explicit loops to update data dependencies continu-
ously. On the other hand, describing a sequence of steps in FRP re-
quires to encode explicit state machines so that functions can switch
behavior depending on the current state.

In the asynchronous spectrum of concurrency, a number of
actor-based languages extend objects with independent execu-
tion contexts that communicate exclusively through message pass-
ing [7, 28, 31, 33]. On the one hand, the inherent nondeterministic
execution of actors demands full state isolation which makes dis-
tribution and many-core parallelism more straightforward. On the
other hand, the implicit synchronization in CÉU provides safe data
sharing and global consensus about the overall state of the system,
enabling abortion and lexical scopes for compositions.

6. Conclusion
CÉU provides comprehensive support for structured synchronous
reactive programming, extending classical structure programming
with continuous interaction with the environment.

CÉU introduces organisms which reconcile data and control
state in a single abstraction. In contrast with objects, organisms
have an execution body that can react independently to stimuli
from the environment. An organism body supports multiple lines
of execution that can await events without loosing control context,
offering an effective alternative to the infamous “callback hell”.
Both static and dynamic instances of organisms are subject to lex-
ical scope with automatic memory management, which eliminates
memory leaks and the need for a garbage collector.

CÉU is suitable for wide range of reactive applications and plat-
forms. We have been experimenting with it in constrained platforms
for sensor networks as well as in full-fledged computers and tablets
for games and graphical applications11. We have also been teach-
ing CÉU as an alternative language for sensor networks for the past
two years in high-school and undergraduate levels. Our experience
shows that students take advantage of the sequential style of CÉU
and can implement non-trivial reactive programs in a couple of
weeks.

References
[1] Erlang manual. http://www.erlang.org/doc/reference_
manual/processes.html (accessed in Aug-2014).

[2] UNIX man page for pthread cancel. man pthread cancel.
[3] A. Adya et al. Cooperative task management without manual stack

management. In Proceedings of ATEC’02, pages 289–302. USENIX
Association, 2002.

[4] A. Benveniste and G. Berry. The synchronous approach to reactive
and real-time systems. Proceedings of the IEEE, 79(9):1270–1282,
1991.

[5] A. Benveniste et al. The synchronous languages twelve years later. In
Proceedings of the IEEE, volume 91, pages 64–83, Jan 2003.

[6] G. Berry. Preemption in concurrent systems. In FSTTCS, volume 761
of LNCS, pages 72–93. Springer, 1993.

[7] B. Bloom et al. Thorn: robust, concurrent, extensible scripting on the
jvm. In ACM SIGPLAN Notices, volume 44, pages 117–136. ACM,
2009.

[8] F. Boussinot and R. de Simone. The Esterel language. Proceedings of
the IEEE, 79(9):1293–1304, Sep 1991.

[9] F. Boussinot et al. Reactive objects. In Annales des
télécommunications, volume 51, pages 459–473. Springer, 1996.

[10] F. Boussinot and L. Hazard. Reactive scripts. In RTCSA’96, pages
270–277. IEEE, 1996.

[11] F. Boussinot and J.-F. Susini. The sugarcubes tool box: A reactive java
framework. Software: Practice and Experience, 28(14):1531–1550,
1998.

[12] E. Czaplicki and S. Chong. Asynchronous functional reactive pro-
gramming for guis. In PLDI’13, pages 411–422, 2013.

11Uses of CÉU: http://www.ceu-lang.org/wiki/index.php?
title=Uses

11 2014/10/10

[13] O.-J. Dahl and K. Nygaard. Simula: an algol-based simulation lan-
guage. Communications of the ACM, 9(9):671–678, 1966.

[14] E. W. Dijkstra. Notes on structured programming. Technological
University Eindhoven, 1970.

[15] D. Gay et al. The nesC language: A holistic approach to networked
embedded systems. In PLDI’03, pages 1–11, 2003.

[16] O. Gnawali et al. Collection tree protocol. In Proceedings of Sen-
Sys’09, pages 1–14. ACM, 2009.

[17] N. Halbwachs et al. The synchronous data-flow programming lan-
guage LUSTRE. Proceedings of the IEEE, 79:1305–1320, September
1991.

[18] D. Harel and A. Pnueli. On the development of reactive systems.
Springer, 1985.

[19] E. Henry and E. Lycklama. How do you plug Java memory leaks? Dr.
Dobb’s Journal of Software Tools, 25(2):115–119, 121, Feb. 2000.

[20] Hill et al. System architecture directions for networked sensors.
SIGPLAN Notices, 35:93–104, November 2000.

[21] C. A. R. Hoare. Communicating sequential processes. Communica-
tions of the ACM, 21(8):666–677, 1978.

[22] I. Maier, T. Rompf, and M. Odersky. Deprecating the observer pattern.
Technical report, 2010.

[23] L. Mandel and M. Pouzet. Reactiveml: a reactive extension to ml. In
Proceedings of PPDP’05, pages 82–93. ACM, 2005.

[24] L. A. Meyerovich et al. Flapjax: a programming language for ajax
applications. In ACM SIGPLAN Notices, volume 44, pages 1–20.
ACM, 2009.

[25] R. Nystrom. Game Programming Patterns. ISBN: 978-0-9905829-0-8
http://gameprogrammingpatterns.com/ (to appear).

[26] ORACLE. Java thread primitive deprecation. http:
//docs.oracle.com/javase/6/docs/technotes/guides/
concurrency/threadPrimitiveDeprecation.html (accessed in
Aug-2014), 2011.

[27] D. Potop-Butucaru et al. The synchronous hypothesis and syn-
chronous languages. In R. Zurawski, editor, Embedded Systems Hand-
book. 2005.

[28] H. Rajan et al. Capsule-oriented programming. Technical Report 13-
01, Iowa State U., Computer Sc., 2013.

[29] G. Salvaneschi et al. Rescala: Bridging between object-oriented and
functional style in reactive applications. In Proceedings of Modular-
ity’13, pages 25–36. ACM, 2014.

[30] F. Sant’Anna et al. Safe system-level concurrency on resource-
constrained nodes. In Proceedings of SenSys’13. ACM, 2013.

[31] J. Schäfer and A. Poetzsch-Heffter. Jcobox: Generalizing active ob-
jects to concurrent components. In ECOOP 2010–Object-Oriented
Programming, pages 275–299. Springer, 2010.

[32] TinyOS TEPs. http://docs.tinyos.net/tinywiki/index.
php/TEPs, 2013.

[33] C. Varela and G. Agha. Programming dynamically reconfigurable
open systems with SALSA. ACM SIGPLAN Notices, 36(12):20–34,
2001.

[34] Z. Wan and P. Hudak. Functional reactive programming from first
principles. SIGPLAN Notices, 35(5):242–252, 2000.

12 2014/10/10

