
Structured Reactive Programming with Céu

Francisco Sant’Anna Roberto Ierusalimschy Noemi Rodriguez
Departamento de Informática — PUC-Rio, Brazil
{fsantanna,roberto,noemi}@inf.puc-rio.br

ABSTRACT
Structured reactive programming (SRP) augments classical
structured programming with continuous interaction with
the environment. We propose a new SRP abstraction mech-
anism for the synchronous language Céu: Organisms ex-
tend objects with an execution body that composes mul-
tiple lines of execution to react to the environment inde-
pendently. Compositions bring structured reasoning to con-
currency and can better describe state machines typical of
reactive applications. Organisms are subject to lexical scope
and automatic memory management similar to stack-based
allocation for local variables. We show that this model does
not require garbage collection or a free primitive in the lan-
guage, eliminating memory leaks by design.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs
and Features

General Terms
Design, Languages

Keywords
Concurrency, Determinism, Esterel, Imperative, Structured
Programming, Synchronous, Reactivity

1. INTRODUCTION
Reactive applications interact continuously and in real time
with external stimuli from the environment [18, 4]. They
represent a wide range of software areas and platforms: from
games in powerful desktops and “apps” in capable smart
phones, to the emerging internet of things in constrained
embedded systems.

Research on special-purpose reactive languages dates back to
the early 80’s, with the co-development of two complemen-
tary styles [5, 24]: The imperative style of Esterel [7] orga-
nizes programs with structured control flow primitives, such
as sequences, repetitions, and parallelism. The dataflow

style of Lustre [17] represents programs as graphs of val-
ues, in which a change to a node updates its dependencies
automatically.

In recent years, Functional Reactive Programming
(FRP) [27] has modernized the dataflow style, inspiring a
number of languages and libraries, such as Flapjax [22], Rx
(from Microsoft), React (from Facebook), and Elm [11].
In contrast, the imperative style of Esterel is confined to
the domain of real-time embedded control systems. As a
matter of fact, imperative reactivity is now often associated
to the observer pattern, typical in object-oriented systems,
because it heavily relies on side effects [20, 25]. However,
short-lived callbacks (i.e., the observers) eliminate any
vestige of structured programming, such as support for
long-lasting loops and automatic variables [3], which are
elementary capabilities of imperative languages. In this
sense, callbacks actually disrupt imperative reactivity,
becoming “our generation’s goto” [13, 15].

We believe that the full range of reactive applications can
benefit from the imperative style of Esterel, which we now
refer to as Structured Reactive Programming (SRP). SRP
extends the classical hierarchical control constructs of Struc-
tured Programming (SP) (i.e., concatenation, selection, and
repetition [14]) to support continuous interaction with the
environment. SRP retains structured and sequential rea-
soning of concurrent programs which constrasts with FRP,
bringing the historical dichotomy between functional and
imperative languages also to the reactive domain. However,
the original rigorous semantics of Esterel, which focuses on
static safety guarantees, is not suitable for other reactive
application domains, such as GUIs, games, and distributed
systems. For instance, the lack of abstractions with dynamic
lifetime makes it difficult to deal with virtual resources such
as graphical widgets, game units, and network sessions.

In practical terms, SRP provides three extensions to SP:
an “await <event>” statement that suspends a line of exe-
cution until the referred event occurs, keeping all context
alive; parallel constructs to compose multiple lines of execu-
tion and make them concurrent; and an orthogonal mech-
anism to abort parallel compositions. The await statement
represents the imperative-reactive nature of SRP, recovering
sequential execution lost with the observer pattern. Parallel
compositions1 allow for multiple await statements to coex-

1In this work, the term parallel composition does not im-
ply many-core parallel execution.

ist, which is necessary to handle concurrent events, common
in reactive applications. Orthogonal abortion is the ability
to abort an activity from outside it, without affecting the
overall consistency of the program (e.g., properly releasing
global resources).

In this work, we extend the Esterel-based language Céu [26]
with a new abstraction mechanism, the organisms, that en-
capsulate parallel compositions with an object-like interface.
In brief, organisms are to SRP like procedures are to SP,
i.e., one can abstract a portion of code with a name and
manipulate (call) that name from multiple places. Unlike
Simula objects [12], organisms react independently to the
environment and do not depend on cooperation, i.e., once
instantiated they become alive and reactive (hence the name
organisms). Furthermore, both static and dynamic alloca-
tion of organisms are subject to lexical scope and automatic
memory management, not relying on heap allocation at all,
and behaving much like local variables in SP.

The rest of the paper is organized as follows: Section 2
presents SRP through Céu, with its underlying synchronous
concurrency model and parallel compositions. Section 3 de-
scribes the organisms abstraction with static and dynamic
instantiation, lexical scope, and automatic memory manage-
ment. Section 4 discusses related work. Section 5 concludes
the paper.

2. SRP WITH CÉU
Céu is a concurrent language in which the lines of execu-
tion, known as trails, react all together continuously and in
synchronous steps to external stimuli. The introductory ex-
ample in Figure 1 starts two trails with the par construct:
the first (lines 4-8) increments variable v on every second
and prints its value on screen; the second (lines 10-13) re-
sets v on every external request to RESET. Programs in Céu
can access C libraries of the underlying platform by prefix-
ing symbols with an underscore (e.g., _printf(<...>), in line
7).

2.1 Synchronous concurrency
In Céu, a program reacts completely to an occurring event
before handling the next. A reaction represents a logical in-
stant in which all trails awaiting the occurring event awake
and execute, one after the other, until they await again or
terminate. During a reaction, the environment is invariant
and does not interrupt the running trails2. If multiple trails
react to the same event, the scheduler employs lexical or-
der to preserve determinism, i.e., the trail that appears first
in the source code executes first. To avoid infinite execu-
tion for reactions, Céu ensures that all loops contain await
statements [26].

As a result of synchronous execution, all consecutive oper-
ations to variable v in Figure 1 are atomic because reac-
tions to events 1s and RESET can never interrupt each other.
In contrast, in asynchronous models with nondeterministic
scheduling, the occurrence of RESET could preempt the first
trail during an increment to v (line 6) and reset it (line 12)
before printing it (line 7), characterizing a race condition

2The actual implementation enqueues incoming input
events to process them in further reactions.

1 input void RESET; // declares an external event
2 var int v = 0; // variable shared by the trails
3 par do
4 loop do // 1st trail
5 await 1s;
6 v = v + 1;
7 _printf("v = %d\n", v);
8 end
9 with

10 loop do // 2nd trail
11 await RESET;
12 v = 0;
13 end
14 end

Figure 1: Introductory example in Céu.

on the variable. The example illustrates the (arguably sim-
pler) reasoning about concurrency under the synchronous
execution model.

The synchronous model also empowers SRP with an orthog-
onal abortion construct that simplifies the composition of
activities3. The code that follows shows the par/or con-
struct of Céu which composes trails and rejoins when either
of them terminates, properly aborting the other:

par/or do
<trail−1>

with
<trail−2>

end
<subsequent−code>

The par/or is regarded as orthogonal because the composed
trails do not know when and how they are aborted (i.e.,
abortion is external to them). This is possible in syn-
chronous languages due to the accurate control of concurrent
activities, i.e., in between every reaction, the whole system
is idle and consistent [6]. Céu extends orthogonal abortion
to work also with activities that use stateful resources from
the environment (such as file and network handlers), as we
discuss in Section 2.2.

Abortion in asynchronous languages is challenging [6] be-
cause the activity to be aborted might be on a inconsis-
tent state (e.g., holding pending messages or locks). This
way, the possible (unsatisfactory) semantics for a hypothet-
ical par/or are: either wait for the activity to be consis-
tent before rejoining, making the program unresponsive to
incoming events for an arbitrary time; or rejoin immedi-
ately and let the activity complete in the background, which
may cause race conditions with the subsequent code. In
fact, asynchronous languages do not provide effective abor-
tion: Java’s Thread.stop primitive has been deprecated [23];
pthread ’s pthread_cancel does not guarantee immediate can-
cellation [2]; Erlang ’s exit either enqueues a terminating
message (which may take time), or unconditionally termi-
nates the process (regardless of its state) [1]; and CSP only
supports a composition operator that “terminates when all
of the combined processes terminate” [19]. As an alternative,
asynchronous activities typically agree on a common proto-
col to abort each other (e.g., through shared state variables
or message passing), which increases coupling among them

3We use the term activity to generically refer to a lan-
guage’s unit of execution (e.g., thread, actor, trail, etc.).

1 input void START, STOP, RETRANSMIT;
2 loop do
3 await START;
4 par/or do
5 await STOP;
6 with
7 loop do
8 par/or do
9 await RETRANSMIT;

10 with
11 await <rand> s;
12 par/and do
13 await 1min;
14 with
15 <send−beacon−packet>
16 end
17 end
18 end
19 with
20 <...> // the rest of the protocol
21 end
22 end

Figure 2: Parallel compositions can describe com-
plex state machines.

with implementation details that are not directly related to
the problem specification.

2.2 Parallel compositions
In terms of control structures, SRP basically extends SP
with parallel compositions, allowing applications to handle
multiple events concurrently. Céu provides three parallel
constructs that vary on how they rejoin: a par/and rejoins
when all trails in parallel terminate; a par/or rejoins when
any trail in parallel terminates; a par never rejoins (even if
all trails in parallel terminate). The code chunks that follow
compare the par/and and par/or compositions side by side:

loop do
par/and do

<...>
with

await 1s;
end

end

loop do
par/or do

<...>
with

await 1s;
end

end

The code <...> represents a complex operation with any
degree of nested compositions. In the par/and variation, the
operation repeats on intervals of at least one second because
both sides must terminate before re-entering the loop. In the
par/or variation, if the operation does not terminate within
1 second, it is restarted. These SRP archetypes represent,
respectively, the sampling and timeout patterns, which are
typical of reactive applications.

The example in Figure 2 relies on hierarchical par/or and
par/and compositions to describe the state machine of a pro-
tocol for sensor networks [16, 26]. The input events START,
STOP, and RETRANSMIT (line 1) represent the external interface
of the protocol with a client application. The protocol en-
ters the top-level loop and awaits the starting event (line 3).
Once the client application makes a start request, the proto-
col starts three other trails: one monitors the stopping event
(line 5); one periodically transmits a status packet (lines
7-18); and one handles the remaining functionality of the
protocol (collapsed in line 20). The periodic transmission

var _packet_t buffer;
<fill−buffer−info>
_send_enqueue(&buffer);
await SEND_ACK;

var _packet_t buffer;
<fill−buffer−info>
finalize

_send_enqueue(&buffer)
with

_send_dequeue(&buffer);
end
await SEND_ACK;

Figure 3: Finalization clauses safely release stateful
resources.

is another loop that starts two other trails (lines 8-17): one
to handle an immediate retransmission request (line 9); and
one to await a small random amount of time and transmit
the status packet (lines 11-16). The transmission (collapsed
in line 15) is enclosed with a par/and that takes at least one
minute before looping, to avoid flooding the network with
packets. At any time, the client may request a retransmis-
sion (line 9), which terminates the par/or (line 8), aborts
the ongoing transmission (line 15, if not idle), and restarts
the loop (line 7). Also, the client may request to stop the
whole protocol at any time (line 5), which terminates the
outermost par/or (line 4) and aborts the transmission and
all composed trails. In this case, the top-level loop restarts
(line 2) and waits for the next request to start the protocol
(line 3), ignoring all other requests (as the protocol speci-
fies).

The example shows how parallel compositions can describe
complex state machines in a structured way, eliminating the
use of global state variables for this purpose [26].

2.2.1 Finalization
The Céu compiler tracks the interaction of par/or compo-
sitions with local variables and stateful C functions (e.g.,
device drivers) in order to preserve safe orthogonal abortion
of trails.

Consider the code in the left of Figure 3, which expands
the sending trail of Figure 2 (line 15). The buffer packet
is a local variable whose address is passed to function
_send_enqueue. The call enqueues the pointer in the radio
driver, which holds it up to the emission of SEND_ACK ac-
knowledging the packet transmission. In the meantime, the
sending trail might be aborted by STOP or RETRANSMIT re-
quests (Figure 2, lines 5 and 9), making the packet buffer
go out of scope, and leaving behind a dangling pointer in
the radio driver. Céu refuses to compile programs like this
and requires finalization clauses to accompany stateful C
calls [26]. The code in the right of Figure 3 properly de-
queues the packet if the block of buffer goes out of scope,
i.e., the finalization clause (after the with) executes auto-
matically on external abortion.

3. ORGANISMS: SRP ABSTRACTIONS
In SP, the typical abstraction mechanism is a procedure,
which abstracts a routine with a meaningful name that can
be invoked multiple times with different parameters. How-
ever, procedures were not devised for continuous input, and
cannot retain control across reactions to the environment.

Céu abstracts data and control into the single concept of
organisms. A class of organisms describes an interface and

par/or do
loop do

await 600ms;
_toggle(11);

end
with

loop do
await 1s;
_toggle(12);

end
with

await 1min;
end

/∗ CODE−1: original blinking ∗/

1 class Blink with
2 var int pin;
3 var int dt;
4 do
5 loop do
6 await (this.dt)ms;
7 _toggle(this.pin);
8 end
9 end

10

11 do
12 var Blink b1 with
13 this.pin = 11;
14 this.dt = 600;
15 end;
16

17 var Blink b2 with
18 this.pin = 12;
19 this.dt = 1000;
20 end;
21

22 await 1min;
23 end
24

25

26

27

28

29

30

31

32 /∗ CODE−2: blinking organisms ∗/

1 struct _Blink with
2 var int pin;
3 var int dt;
4 end;
5

6 do
7 var _Blink b1, b2;
8

9 par/or do
10 // body of b1
11 b1.pin = 11;
12 b1.dt = 600;
13 loop do
14 await (b1.dt)ms;
15 _toggle(b1.pin);
16 end
17 await FOREVER;
18 with
19 // body of b2
20 b2.pin = 12;
21 b2.dt = 1000;
22 loop do
23 await (b2.dt)ms;
24 _toggle(b2.pin);
25 end
26 await FOREVER;
27 with
28 await 1min;
29 end
30 end
31

32 /∗ CODE−3: organisms expansion ∗/

Figure 4: Two blinking LEDs using organisms.

an execution body. The interface exposes public variables,
methods, and also internal events (exemplified later). The
body can contain any valid code in Céu, including parallel
compositions. When an organism is instantiated, its body
starts to execute in parallel with the program. Organism
instantiation can be either static or dynamic.

The example in Figure 4 introduces static organisms with
three code chunks:

• The leftmost code (CODE-1) blinks two LEDs with
different frequencies in parallel and terminates after 1
minute.

• The code in the middle (CODE-2) abstracts the blink-
ing LEDs in an organism class and uses two instances
of it to reproduce the same behavior of CODE-1.

• The rightmost code (CODE-3) is the semantically
equivalent expansion of the organisms bodies, which
resembles the original CODE-1.

In CODE-2, the Blink class (lines 1-9) exposes the pin and
dt properties, corresponding to the LED I/O pin and the
blinking period, respectively. The application then creates
two instances, specifying those properties in the construc-
tors (lines 12-15 and 17-20). Inside constructors, the iden-
tifier this refers to the organism under instantiation. The
constructors automatically start the organisms bodies (lines
5-8) to run in parallel in the background, i.e., both instances
are already running before the await 1min (line 22).

CODE-3 is semantically equivalent to CODE-2, but with
the organism constructors and bodies expanded (lines 10-17
and 19-26). The generated par/or (lines 9-29) makes the in-
stances concurrent with the rest of the application (i.e., the

await 1min, in line 28). Note the generated await FOREVER
statements (lines 17 and 26) to avoid the organisms bodies
to terminate the par/or. The _Blink type (lines 1-4) cor-
responds to a simple datatype without an execution body.
The actual implementation of Céu does not expand the or-
ganisms bodies like in CODE-3 ; instead, a class generates a
single code for its body, which is shared by all instances (in
the same way as objects share class methods).

The main distinction between organisms and standard ob-
jects is how organisms can react independently and directly
to the environment. For instance, organisms need not be
included in observer lists for events, or rely on the main
program to feed their methods with input from the envi-
ronment. Although the organisms run independently from
the main program, they are still subject to the disciplined
synchronous model, which keeps the whole system deter-
ministic, as the static expansion of CODE-3 suggests (and
based on the scheduler description of Section 2.1).

The memory model for organisms is similar to stack-living
local variables of procedures, employing lexical scope and
automatic management. Note that CODE-2 uses a do-end
block (lines 11-23) that limits the scope of the organisms
for 1 minute (line 22). During that period, the organisms
are accessible (through b1 and b2) and reactive to the envi-
ronment (i.e., blinking continuously). After that period, the
organisms go out of scope and not only they become inac-
cessible but their bodies are automatically aborted, as the
expansion of CODE-3 makes clear: The par/or (lines 9-29)
aborts the organisms bodies after 1 minute (line 28), just
before they go out of scope (line 30). The par/or termina-
tion properly triggers all active finalization clauses inside the
organism bodies (if any). Lexical scope extends the idea of

1 class Unit with
2 var int pos = 0;
3 var int dst = 0;
4 event int move;
5 do
6 loop do
7 par/or do
8 dst = await this.move;
9 with

10 if dst != pos then
11 <code−to−move−pos−to−dst>
12 end
13 await FOREVER;
14 end
15 end
16 end
17

18 var Unit u1 with
19 this.pos = 100;
20 this.dst = 300;
21 end;
22

23 var Unit u2 with
24 this.pos = 200;
25 this.dst = 200;
26 end;
27

28 await 1s;
29 emit u2.move => 500;

Figure 5: Organism manipulation through interface
events.

orthogonal abortion to organisms, as they are automatically
aborted when going out of scope. In this sense, organisms
are more than a cosmetic convenience for programmers be-
cause they tie together data and associated execution into
the same scope.

In addition to properties and methods, organisms also ex-
pose internal events which support await and emit opera-
tions. In the example in Figure 5, class Unit (lines 1-16)
defines the position and destination properties pos and dst
with default values 0 (lines 2-3), and the event move to lis-
ten requests to move the unit position (line 4). The main
program (lines 18-29) creates two units, requests the first
to move immediately to dst=300 (line 20), and the second
to move after 1 second to position 500 (line 29). The body
of the class enters a continuous loop (lines 6-15) to handle
move requests (line 8) while performing the ongoing moving
operation (lines 10-13) in parallel. The par/or (lines 7-14)
restarts the loop on every move request which updates the
dst position. The moving operation (collapsed in line 11)
can be as complex as needed, for example, using another
loop to apply physics over time. The await FOREVER (line 13)
halts the trail after the move completes to avoid restarting
the outer loop. An advantage of event handling over method
calls is that they can be composed in the organism body to
affect other ongoing operations. In the example, the await
move (line 8) aborts and restarts the moving operation, just
like the timeout pattern of Section 2.2.

3.1 Dynamic organisms
Static embedded systems typically manipulate hardware
with a one-to-one correspondence in software, i.e., a static
piece of software deals with a corresponding piece of hard-
ware (e.g., a sensor or actuator). In contrast, more general
reactive systems have to deal with resource virtualization
that requires dynamic allocation, such as multiplexing pro-

tocols in a network, or simulating entire civilizations in a
game. Dynamic allocation for organisms extends the power
of SRP to handle virtual resources in reactive applications.

Céu supports dynamic instantiation of organisms through
the spawn primitive. The example that follows spawns a
new instance of Unit (defined in Figure 5) every second and
moves it to a random position:

loop do
await 1s;
spawn Unit with

this.pos = _rand() % 500;
this.dst = _rand() % 500;

end;
end

Dynamic instances also execute in parallel with the rest of
the application, but have different lifetime and scoping rules
then static ones: A static instance has an identifier and a
well-defined scope that holds its memory resources; A dy-
namic instance is anonymous and outlives the scope that
spawns it: in the example, the spawned units outlive the
enclosing loop iterations. Due to the lack of an explicit
identifier or reference, a dynamic instance can control its
own lifetime: once its body terminates, a dynamic organism
is automatically freed from memory. This does not apply
for a static instance because its memory is statically preal-
located and its identifier is still accessible even if its body
terminates.

The code that follows redefines the body of the Unit class
of Figure 5 to terminate after 1 hour, imposing a maximum
life span in which a unit can react to move requests. After
that, the body terminates and the organism is automatically
freed (if dynamically spawned):

class Unit with
<...> // interface

do
par/or do

<...> // moving trail
with

await 1h;
end

end

The lack of scopes for dynamic organisms prevents orthogo-
nal abortion, given that there is no way to externally abort
the execution of a dynamic instance. To address orthogonal
abortion, Céu provides lexically scoped pools as containers
that hold dynamic instances. The example that follows de-
clares the units pool to hold a maximum of 10 instances
(line 3):

1 input void CLICK;
2 do
3 pool Unit[10] units;
4 par/or do
5 loop do
6 await 1s;
7 spawn Unit in units with
8 <...> // constructor
9 end;

10 end
11 with
12 await CLICK;
13 end
14 end

A new unit is spawned in this pool once a second (note the
in units, in line 7). Once the application receives a CLICK
(line 12), the par/or (line 4) terminates, making the units
pool go out of scope and abort/free all units alive.

Pools with bounded dimension (e.g., pool Unit[10] units),
have static pre-allocation, resulting in efficient and deter-
ministic organism instantiation. This opens the possibility
for dynamic behavior also in constrained embedded systems.
If a pool does not specify a dimension (e.g., pool Unit[]
units), the instances go to the heap but are still subject to
the pool scope. If a spawn does not specify a pool, as in
“spawn Unit;”, the instances go to a predefined dimension-
less pool in the top of the current class (and are still subject
to that pool scope).

Support for lexical scope for both static and dynamic or-
ganisms eliminate garbage collection, free primitives, and
memory leaks altogether.

3.2 Pointers and References
As organisms react independently to the environment, it is
often not necessary to hold pointers to them. Nonetheless,
a spawn allocation returns a pointer to the new organism,
which can be later dereferenced with the operator ‘:’ (anal-
ogous to ‘->’ of C/C++):

var Unit∗ ptr = spawn Unit;
ptr:pos = 0; // this access is safe
await 2h;
emit ptr:move => 100; // this access is unsafe

Pointers can be dangerous because they may last longer than
the organisms to which they refer. The code above first ac-
quires a pointer ptr to a Unit. Then, it dereferences the
pointer in two occasions: in the same reaction, just after ac-
quiring the reference; and in another reaction, after 2h, when
the pointed organism may have already terminated and been
freed, leading to unspecified behavior in the program.

As a protection against dangling pointers, Céu enforces all
pointer accesses across reactions to use the watching con-
struct which supervises organism termination, as illustrated
in the left of Figure 6. The whole watching construct aborts
whenever the referred organism terminates, eliminating pos-
sible dangling pointers in the program. The code in the
right shows the equivalent expansion of the watching con-
struct into a par/or that awaits the special event __killed
(which all classes have internally).

Céu also refuses to assign the address of an organism to a
pointer of greater scope, as illustrated below:

var Unit∗ ptr;
do

var Unit u;
ptr = &u; // illegal attribution

end
ptr:pos = 0; // unsafe access ("u" went out of scope)

Pools supports iterators to acquire temporary pointers to all
alive instances. To preserve safe pointer accesses, iterators
cannot await. The example that follows iterates over the
units pool to check for collision among units:

var Unit∗ ptr = spawn Unit;
ptr:pos = 0;
watching ptr do

await 2h;
emit ptr:move => 100;

end

var Unit∗ ptr = spawn Unit;
ptr:pos = 0;
par/or do

await ptr:__killed;
with

await 2h
emit ptr:move => 100;

end

Figure 6: Watching a reference with equivalent ex-
pansion.

pool Unit[10] units;
<...>
loop (Unit∗)u1 in units do

loop (Unit∗)u2 in units do
if <check−collision> then

emit u1:move => _rand() % 500;
emit u2:move => _rand() % 500;

end
end

end

4. RELATED WORK
Simula is a simulation language that introduced the con-
cepts of objects and coroutines [12]. The syntactic struc-
ture of classes in Simula is very similar to Céu, exposing
an interface that encapsulates an execution body. However,
the underlying execution models are fundamentally distinct:
Céu employs a reactive scheduler to resume trails based on
external stimuli, while Simula relies on cooperation between
processes (i.e., detach and resume calls, at the lowest level).
Simula has no notion of compositions, with each process
having a single line of execution. In particular, the lack of
a par/or precludes orthogonal abortion and many derived
Céu features, such as lexically scoped organisms, finaliza-
tion, and reference watching. Without scopes, Simula ob-
jects and processes have to live on the heap and rely on
garbage collection. As far as we know, Simula processes
cannot be terminated explicitly from other processes.

Some previous work extend Esterel to provide dynamic
synchronous abstractions [9, 8, 10]. In particular, Reac-
tiveML [21] is a functional variant of Esterel with rich dy-
namic synchronous abstractions through processes. How-
ever, these languages rely on heap allocation and/or garbage
collection and may not be suitable for constrained embedded
systems. They also lack a finalization mechanism that hin-
ders proper orthogonal abortion in the presence of stateful
resources.

Finally, the main distinction to existing work is how Céu
incorporates to SRP the fundamental concept in SP of lex-
ically scoped variables. All constructs of Céu have a clear
and unambiguous lifespan that can be inferred statically
from the source code. Lexical scope permeates all aspects
of the language: Any piece of data or control structure has
a well-defined scope that can be abstracted as an organism
and safely aborted through finalization. Even dynamic in-
stances of organisms reside in pools with well-defined scopes
with the same properties.

Functional Reactive Programming [27] contrasts with SRP
as a complementary programming style for reactive appli-
cations. We believe that FRP is more suitable for data-
intensive applications, while SRP, for control-intensive ap-

plications. For instance, describing a sequence of steps in
FRP requires to encode explicit state machines so that func-
tions can switch behavior depending on the current state. In
contrast, FRP uses declarative formulas to specify continu-
ous functions over time, such as for physics or data con-
straints among entities, while SRP requires explicit loops to
update data dependencies continuously.

5. CONCLUSION
Céu provides comprehensive support for structured reac-
tive programming, extending classical structure program-
ming with continuous interaction with the environment.

Céu introduces organisms which reconcile data and control
state in a single abstraction. In contrast with objects, organ-
isms have an execution body that can react independently to
stimuli from the environment. An organism body supports
multiple lines of execution that can await events without
loosing control context, offering an effective alternative to
the infamous “callback hell”. Both static and dynamic in-
stances of organisms are subject to lexical scope with auto-
matic memory management, which eliminates memory leaks
and the need for a garbage collector.

Céu is suitable for wide range of reactive applications and
platforms. We have been experimenting with it in con-
strained platforms for sensor networks as well as in full-
fledged computers and tablets for games and graphical appli-
cations4. Céu successfully participated in the Google Sum-
mer of Code5 with a student that had no previous experience
with the language. We have also been teaching Céu as an
alternative language for sensor networks for the past two
years in high-school and undergraduate levels. Our experi-
ence shows that students take advantage of the sequential
style of Céu and can implement non-trivial reactive pro-
grams in a couple of weeks.

6. REFERENCES
[1] Erlang manual. http://www.erlang.org/doc/
reference_manual/processes.html (accessed in
Aug-2014).

[2] UNIX man page for pthread cancel. man
pthread cancel.

[3] A. Adya et al. Cooperative task management without
manual stack management. In Proceedings of
ATEC’02, pages 289–302. USENIX Association, 2002.

[4] A. Benveniste and G. Berry. The synchronous
approach to reactive and real-time systems.
Proceedings of the IEEE, 79(9):1270–1282, 1991.

[5] A. Benveniste et al. The synchronous languages twelve
years later. In Proceedings of the IEEE, volume 91,
pages 64–83, Jan 2003.

[6] G. Berry. Preemption in concurrent systems. In
FSTTCS, volume 761 of LNCS, pages 72–93. Springer,
1993.

[7] F. Boussinot and R. de Simone. The Esterel language.
Proceedings of the IEEE, 79(9):1293–1304, Sep 1991.

4Uses of Céu: http://www.ceu-lang.org/wiki/index.php?
title=Uses

5LabLua GSoC’14: http://google-opensource.blogspot.
com/2014/08/google-summer-of-code-new-organizations.html

[8] F. Boussinot et al. Reactive objects. In Annales des
télécommunications, volume 51, pages 459–473.
Springer, 1996.

[9] F. Boussinot and L. Hazard. Reactive scripts. In
RTCSA’96, pages 270–277. IEEE, 1996.

[10] F. Boussinot and J.-F. Susini. The sugarcubes tool
box: A reactive java framework. Software: Practice
and Experience, 28(14):1531–1550, 1998.

[11] E. Czaplicki and S. Chong. Asynchronous functional
reactive programming for guis. In PLDI’13, pages
411–422, 2013.

[12] O.-J. Dahl and K. Nygaard. Simula: an algol-based
simulation language. Communications of the ACM,
9(9):671–678, 1966.

[13] M. de Icaza. Callbacks as our generations’ go to
statement. http:
//tirania.org/blog/archive/2013/Aug-15.html
(accessed in Aug-2014), 2013.

[14] E. W. Dijkstra. Notes on structured programming.
Technological University Eindhoven, 1970.

[15] Elm Language Web Site. Escape from callback hell.
http://elm-lang.org/learn/
Escape-from-Callback-Hell.elm (accessed in
Aug-2014).

[16] O. Gnawali et al. Collection tree protocol. In
Proceedings of SenSys’09, pages 1–14. ACM, 2009.

[17] N. Halbwachs et al. The synchronous data-flow
programming language LUSTRE. Proceedings of the
IEEE, 79:1305–1320, September 1991.

[18] D. Harel and A. Pnueli. On the development of
reactive systems. Springer, 1985.

[19] C. A. R. Hoare. Communicating sequential processes.
Communications of the ACM, 21(8):666–677, 1978.

[20] I. Maier, T. Rompf, and M. Odersky. Deprecating the
observer pattern. Technical report, 2010.

[21] L. Mandel and M. Pouzet. Reactiveml: a reactive
extension to ml. In Proceedings of PPDP’05, pages
82–93. ACM, 2005.

[22] L. A. Meyerovich et al. Flapjax: a programming
language for ajax applications. In ACM SIGPLAN
Notices, volume 44, pages 1–20. ACM, 2009.

[23] ORACLE. Java thread primitive deprecation.
http://docs.oracle.com/javase/6/docs/
technotes/guides/concurrency/
threadPrimitiveDeprecation.html (accessed in
Aug-2014), 2011.

[24] D. Potop-Butucaru et al. The synchronous hypothesis
and synchronous languages. In R. Zurawski, editor,
Embedded Systems Handbook. 2005.

[25] G. Salvaneschi et al. Rescala: Bridging between
object-oriented and functional style in reactive
applications. In Proceedings of Modularity’13, pages
25–36. ACM, 2014.

[26] F. Sant’Anna et al. Safe system-level concurrency on
resource-constrained nodes. In Proceedings of
SenSys’13. ACM, 2013.

[27] Z. Wan and P. Hudak. Functional reactive
programming from first principles. SIGPLAN Notices,
35(5):242–252, 2000.

