
Where Do Events Come From?
Reactive and Energy-Efficient Programming From The Ground Up

Francisco Sant’Anna
Dep. de Informática e Ciência da Computação

Rio de Janeiro State University, Brazil
francisco@ime.uerj.br

Alexandre Sztajnberg
Dep. de Informática e Ciência da Computação

Rio de Janeiro State University, Brazil
alexszt@ime.uerj.br

Abstract
In reactive and event-based systems, execution is guided
by an external environment that generates inputs to the
application and is affected by outputs from it. Reactive
languages provide dedicated syntax and semantics to
deal with events and greatly simplify the programming
experience in this domain. Nevertheless, the environment
is typically prefabricated in a host language and the
very central concept of events is implemented externally
to the reactive language. In this work, we propose an
interrupt handler primitive for a reactive language that
targets embedded systems in order to take control of the
whole event loop, from input generation up to output
effects. We propose the new asynchronous primitive in
the context of the synchronous language Céu and discuss
how they synergize to prevent runtime race conditions
at compile time, support lexically-scoped drivers, and
provide automatic standby for applications.

Keywords interrupt service routines, reactive program-
ming, standby, synchronous/asynchronous execution

1 Introduction
Reactive applications interact continuously and in real
time with the external world through hardware peripher-
als such as sensors and actuators (e.g., buttons, displays,
timers, etc.). These interactions are typically represented
in software as input events flowing from the peripherals
to the application and as output events flowing from the
application to the peripherals. Peripherals can be ab-
stracted in a single component, the environment, which
connects with the application through an event loop:
the application sits idle until the environment awakes it
on an input; the application reacts and generates out-
puts back, which affect the environment; the application
becomes idle and the loop restarts.

Reactive languages provide syntax and semantics spe-
cialized to deal with events and simplify the development
of applications in this domain. However, the environment
is still typically implemented in a host language (e.g., C)
and controls the main event loop, invoking entry points

REBLS’18, November 04, 2018, Boston, MA, USA

2018.

into the reactive language runtime on the occurrence of
inputs, and also receiving output calls from it.
The event-based interface between the reactive lan-

guage and the environment is arguably inevitable, but
reveals the environment as a rigid system component
that evolves in separate from the application. It also
requires the programmer to deal with multiple syntaxes,
incompatible type systems, and different address spaces.
Furthermore, in the context of embedded systems, a
proper host operating system (OS) may even be absent
or lacking enough device drivers, which requires more
low-level intervention from the application.
In this work, we propose interrupt service routines

(ISRs) as an asynchronous primitive for the synchronous
reactive language Céu [10]. ISRs empower reactive appli-
cations with their own device drivers that self-generate
inputs, bypassing the need for a host environment. Céu
targets OS-less embedded architectures, such as Arduino-
compatible microcontrollers. Applications in Céu can
share data buffers with drivers, to avoid unnecessary
copying, with some static guarantee that no data races
will occur. Céu also provides a lexical finalization mech-
anism that safely disables drivers and turns off periph-
erals to save energy. Finally, the synchronous semantics
of Céu enforces that applications react to inputs in
bounded time and remain in idle states susceptible to
standby. With the help of drivers and a power manager,
the microcontroller sleeps automatically at optimal sleep-
ing modes after each input reaction. We implemented
drivers for a variety of peripherals, such as GPIO, A/D
converter, USART, SPI, and an RF transceiver.
Our work is largely inspired by TinyOS [6], a low-

power OS for sensor networks, which also provides asyn-
chronous events with data race detection [5] and auto-
matic energy management [7]. We adapted these ideas to
the structured reactive model of Céu, and refined them
with stronger guarantees due to its support for lexically
scoped lines of execution with automatic finalization.
We start with an introduction of the structured syn-

chronous reactive programming model of Céu (Sec-
tion 2). Then, we propose to extend it with asynchronous
ISRs and discuss how to interoperate with synchronous
code through an event-driven interface (Section 3.1). We

1

REBLS’18, November 04, 2018, Boston, MA, USA Francisco Sant’Anna and Alexandre Sztajnberg

also propose a simple static analysis to prevent race con-
ditions between synchronous and asynchronous code at
compile time (Section 3.2). Finally, we propose a new lan-
guage runtime that enters in sleep mode automatically
to save energy (Section 3.3).

2 Céu: Structured Synchronous
Reactive Programming

Céu [10] is an Esterel-based [4] reactive programming
language targeting resource-constrained embedded sys-
tems, with the characteristics that follow:

Reactive: code only executes in reaction to events
and is idle most of the time.

Structured: programs use lexically-scoped struc-
tured control mechanisms such as spawn and await

(to create and suspend lines of execution).
Synchronous: reactions run atomically and to com-

pletion on each line of execution, i.e., there’s no
implicit preemption or real parallelism.

Structured reactive programming lets developers write
code in direct style, reversing from the inversion of con-
trol imposed by event-driven execution [1, 8, 9].

1 output high/low LED;

2 input high/low BUTTON;

3 input Packet RADIO_RECV;

4 par/or do

5 var high/low v = await BUTTON until (v==low);

6 with

7 finalize with

8 emit LED(low);

9 end

10 loop do

11 emit LED(high);

12 await RADIO_RECV;

13 emit LED(low);

14 await RADIO_RECV;

15 end

16 end

Listing 1. A Céu program that blinks the LED when-
ever a radio packet is received, terminating on a button
press, always with the LED off.

Listing 1 illustrates the main characteristics of Céu,
namely event-driven I/O, lexically-scoped compositions,
and synchronous execution. The program toggles the
state of the LED whenever a radio packet is received,
terminating on a button press, always with the LED off.
The program first declares the LED output, and the BUTTON
and RADIO RECV input events (ln 1–3). The declarations
include a payload type, i.e., each event occurrence carries
a value of that type (high/low is a boolean type). Then,
the program uses a par/or composition (ln 4–16) to run

two lines of execution, aka trails, in parallel: a single-
statement trail that waits for a button press before
terminating (ln 5), and an endless loop that toggles the
LED on and off whenever a radio packet is received
(ln 10–15). The finalize clause (ln 7–9) ensures that, no
matter how its enclosing trail terminates or aborts (i.e.,
even from a button press), the LED is unconditionally
turned off (ln 8).
All communication between the application and the

environment is done through the await and emit prim-
itives, which awaits an input event and generates an
output event, respectively (ln 5,8,11–14 in the example).
The par/or, which stands for parallel-or, is a lexical

composition that terminates as soon as one of the trails
terminates, but which also automatically aborts and
finalizes the other trail(s). In the example, when the
button is pressed (ln 5), not only the toggling loop
will be aborted (ln 10–15), but the finalize clause will
turn the LED off (ln 8) since its enclosing block goes
out of scope. The par/or is regarded as an orthogonal
preemption primitive [3] because the trails need not to
be tweaked to affect each other.
The synchronous execution model of Céu dictates

that reactions to input events are atomic and that in-
coming events are never lost, which we refer to as the
atomicity and responsiveness properties, respectively. In
Listing 1, even if two packets arrive simultaneously in
the environment, the synchronous model ensures these
properties by adopting an event queue: the first await

awakes from the first packet and turns the LED off atom-
ically (ln 12–13); only after that, the second await will
awake from the second packet (ln 14). From the point
of view of the program, the packets arrive in sequence
and each is handled in separate.

3 Interrupt Service Routines in Céu
In Listing 1, the input & output events are external
to the program and are generated by the host language
representing the environment. We now propose to extend
Céu with interrupt services routines (ISRs) to take
control of the whole event loop using a safe and energy-
efficient approach.

3.1 Scoped ISRs

Interrupts service routines (ISRs) are software entry
points that execute in response to hardware interrupts
from peripherals such as timers and GPIOs. ISRs are
at the lowest interface layer between the hardware and
software and are the absolute source of inputs to pro-
grams. An ISR starts to execute as soon as a hardware
interrupt occurs, suspending the ongoing program flow

2

Where Do Events Come From? REBLS’18, November 04, 2018, Boston, MA, USA

1 output high/low PIN_13; // connected to LED

2 input high/low PIN_02; // connected to button

3 #include "gpio.ceu" // GPIO driver

4

5 emit PIN_13(low);

6 loop do

7 var high/low v = await PIN_02;

8 emit PIN_13(v);

9 end

Listing 2. Synchronous code that turns the LED on
whenever the button is pressed and off whenever it is
unpressed.

abruptly. Such asynchronous behavior reflects the inher-
ent concurrent nature of peripherals interacting with the
real world.
We propose to extend Céu with asynchronous ISRs.

However, asynchronous execution confronts the synchro-
nous mindset of Céu since the assumption that reactions
are atomic no longer holds. Not only this might lead
to race conditions at a fine grain, but might also affect
the ordering of events at a coarse grain: the effect of
an earlier event might be perceived after the effect of a
later event. Still, our goal is to preserve the well-behaved
interaction between Céu and the environment even in
the presence of asynchronous ISRs. Our approach is to
push all subtleties of asynchronous execution into de-
vice drivers, which impersonate the environment and are
responsible to emit input events towards regular syn-
chronous code. Synchronous code preserves the atomicity
and responsiveness properties, communicating with the
environment only through events, exactly as before.
As a first example, Listing 2 and 3 use GPIOs to

connect a button to an LED via software such that the
LED (pin 13) is on whenever the button (pin 02) is
pressed, and off whenever it is unpressed. The idea is
to use Listing 2 handle synchronous/atomic changes in
the button to affect the LED, and Listing 3 to handle
asynchronous changes that are enqueued towards the
synchronous side.
Listing 2, the synchronous side, first declares its in-

terface with the external world and includes the asyn-
chronous side as a driver (ln 1–3). It then starts with
the LED off (ln 5) and enters a loop (ln 6–9) that, when-
ever the button changes (ln 7), toggles the state of the
LED with the new value (ln 8). This code should be
concise and straightforward: each button change toggles
the LED (atomicity) and no button changes are ever lost
(responsiveness).

Listing 3, the asynchronous side, implements the driver
for the output and input events. An output implemen-
tation (ln 4–6) is similar to a parameterized subroutine:

1 // OUTPUT DRIVER

2

3 { pinMode(13, OUTPUT); }

4 output (high/low v) PIN_13 do

5 { digitalWrite(13, @(v as int)); }

6 end

7

8 // INPUT DRIVER

9

10 input high/low PIN_02;

11 {

12 pinMode(2, INPUT_PULLUP);

13 EIMSK |= (1 << INT0); // enables pin-02 ints

14 EICRA |= (1 << ISC00); // for level changes

15 }

16 spawn async/isr [INT0_vect] do

17 emit PIN_02({digitalRead(2)} as high/low);

18 end

Listing 3. Asynchronous driver for GPIO that, on
hardware interrupts, emits an input event into a queue.

whenever the application invokes emit, the output body
executes atomically.
Céu is designed to interoperate seamlessly with C

and supports a compatible type system with self-evident
conversion rules and same internal representation (e.g.,
high/low is a boolean, u8 is an unsigned 8-bit value, etc.).
Céu also supports inline C between curly braces (ln 3,5)
and interpolation to evaluate Céu expressions (e.g., @v).
This allows drivers to take advantage of existing libraries
of embedded toolchains such as Arduino. Our drivers still
use C, but only a convenient subset (e.g., assignments
and getters & setters) for low-level port manipulation.
In the example, when the driver is included, it con-

figures pin 13 as output (ln 3) and sets its new state
whenever PIN 13 is emitted (ln 5). An input event im-
plementation uses an ISR registered with the spawn

async/isr primitive (ln 16–18), which is automatically
invoked whenever the associated interrupt occurs (e.g.,
INT0 vect). An ISR in Céu will typically perform simple
operations and emit an input event to awake the synchro-
nous side (ln 17). However, although the ISR executes
asynchronously when the interrupt occurs, the emit goes
into an input queue and does not affect the synchronous
side immediately. The input driver also configures pin 2
to behave as input and to generate external interrupts
on level transitions (ln 11–15). The queue is static and
new emissions of an unhandled input override the same
position in the queue. This semantics is comparable to
interrupt flags in microcontrollers and prevents buffer
overflows.
The example illustrates the clear separation between

the application and the driver through an event-driven
interface. Now, the whole application is written in Céu:

3

REBLS’18, November 04, 2018, Boston, MA, USA Francisco Sant’Anna and Alexandre Sztajnberg

1 // A/D DRIVER (adc.ceu)

2

3 output int ADC_REQUEST; // requests a conversion

4 input int ADC_DONE; // conversion is done

5

6 finalize with

7 {

8 ADCSRA &= B01111111; // disables A/D converter

9 ACSR = B10000000; // disables comparator

10 DIDR0 |= B00111111; // disables pins

11 }

12 end

13 ... // driver initialization

14 ... // input / output implementations

15

16 // APPLICATION (main.ceu)

17

18 loop do

19 var int v;

20 do

21 #include "adc.ceu" // driver contents above

22 emit ADC_REQUEST(A0);

23 v = await ADC_DONE;

24 end

25 ... // uses sensor value "v"

26 await 1h;

27 end

Listing 4. The A/D driver (ln 1–14) is included in
the application (ln 21) inside a lexically-scoped block
(ln 20–24), which turns off all driver functionalities
automatically on termination. (The driver and appli-
cation are actually in separate files.)

the synchronous side remains well behaved with no low-
level calls, and the asynchronous side deals with the
complexity of device drivers. Nevertheless, drivers are
typically write-once components developed by embedded
systems specialists, which are reused in most applica-
tions. Note that each supported architecture requires a
mapping between the async/isr and the actual interrupt
vector table (which we provide for the AVR/ATmega
and ARM/Cortex microcontrollers).
The next example in Listing 4 illustrates the use of

a lexically-scoped driver for the A/D converter. The
application is a typical periodic sensor sampling loop,
but which designates an explicit do-end block (ln 20–24)
to include the driver (ln 21) and use it (ln 22–23). The
driver specifies a finalization code (ln 6–12) that exe-
cutes unconditionally whenever its enclosing block goes
out of scope (ln 24). The finalize completely disables
all A/D functionality to save energy (ln 8–10). As dis-
cussed in the previous section, the finalizer would also
execute if aborted from a hypothetical par/or enclosing
the driver. Note that the driver interface (ln 3–4) is

1input void A;

2input void B;

3var int x = 1;

4par/and do

5await A;

6x = x + 1;

7with

8await B;

9x = x * 2;

10end

Listing 5. Shared x

input void A;

// (empty line)

var int y = 1;

par/and do

await A;

y = y + 1;

with

await A;

y = y * 2;

end

Listing 6. Shared y

Figure 1. Accesses to shared x never concurrent. Ac-
cesses to shared y are concurrent but still deterministic.

,

visible only inside the block (ln 20–24) and thus cannot
be inadvertently used outside it.

3.2 Safe Shared-Memory Concurrency

In Céu, when multiple trails awake in the same reaction,
they execute atomically in lexical order, i.e., in the order
they appear in the source code. In Figure 1, both list-
ings define a shared variable (ln 3) which is assigned in
parallel trails (ln 6, 9). In Listing 5, the two assignments
to x can only execute in reactions to different events A

and B (ln 5,8), which cannot occur simultaneously due
to the atomicity property of the synchronous model. In
Listing 6, the two assignments to y are simultaneous
because they execute in reaction to the same event A.
Nevertheless, because Céu follows lexical order and exe-
cutes atomically, the outcome is still deterministic, and
y always becomes 4 ((1+1)*2). Even so, Céu performs
(optional) concurrency checks at compile time to de-
tect conflicting accesses to shared variables: if a variable
is written in a trail segment, then a concurrent trail
segment cannot access that variable [10].
The addition of asynchronous ISRs now poses real

threats concerning race conditions since they interrupt
execution at arbitrary points and could possibly share
memory with synchronous code. Listing 7 illustrates a
minimum serial communication (USART) application
(ln 15–24) that consumes incoming bytes (ln 19–23) as
they arrive (ln 18). The USART API (ln 1–4) exposes an
input event to signal incoming data (ln 3) and a buffer
to prevent data loss (ln 4). The buffer is indispensable
because the microcontroller might not cope with the
USART speed. The (unsafe) driver ISR (ln 6–13) simply
appends incoming bytes to the end of the buffer (ln 9)
and signals the application (ln 11). As a possible race
condition, the ISR might fire and append a new byte
to the buffer (ln 9) just before the application clears it
(ln 23), in which case the new byte would be lost forever.

4

Where Do Events Come From? REBLS’18, November 04, 2018, Boston, MA, USA

1 // USART INTERFACE

2

3 input none USART_RX; // data is available

4 var[32] byte rx_buf; // data buffer

5

6 // DRIVER

7

8 spawn async/isr [USART_RX_vect] do

9 rx_buf = rx_buf .. [{UDR0} as byte]; // appends

10 if $rx_buf == 1 then

11 emit USART_RX; // emits unless already pending

12 end // (assumes client consumes all)

13 end

14

15 // APPLICATION

16

17 loop do

18 await USART_RX;

19 var int i;

20 loop i in [0 -> $rx_buf[do // ‘$’ = length

21 // uses rx_buf[i]

22 end

23 $rx_buf = 0;

24 end

Listing 7. The USART buffer is shared between the
ISR and the application, resulting in a pontential race
condition. (The driver and application are actually in
separate files.)

Céu treats a spawn async/isr as a block that runs in
parallel with the rest of the program (hence the prefix
spawn). This way, it is clear for the compiler that the
accesses to rx buf in Listing 7 may lead to race conditions
(e.g., ln 9,23), and Céu raises a compile-time error. The
programmer is responsible to protect concurrent memory
accesses with atomic blocks, which disables interrupts
for a short period of time.

However, we do not expect that application program-
mers should be required to resolve race conditions. Céu
provides code reactive abstractions (similar to corou-
tines) that help hiding concurrency issues inside drivers.
Listing 8 changes the USART API (ln 1–3) to expose
a code abstraction that expects a reference to a buffer
and a number of bytes to receive. Now the application
(ln 29–35) invokes the abstraction (ln 33) passing a local
buffer (ln 32). The driver (ln 5–27) now hides the low-
level interface (ln 7–8) and implements the abstraction
(ln 15–27) that protects the accesses to the shared buffer
with an atomic block (ln 18–21). The code copies the
driver buffer into the application buffer (ln 19) up to the
requested number of bytes (ln 22). On the one hand the
extra copying incurs a memory and runtime overhead,
but on the other hand it prevents race conditions with
the ISR.

1 // USART INTERFACE

2

3 code Usart_RX (var&[] byte buf, var int n) -> none;

4

5 // DRIVER

6

7 input none USART_RX;

8 var[32] byte rx_buf;

9

10 spawn async/isr [USART_RX_vect] do

11 rx_buf = rx_buf .. [{UDR0}];

12 emit USART_RX;

13 end

14

15 code Usart_RX (var&[] byte buf, var int n) -> none

16 do

17 loop do

18 atomic do

19 buf = buf..rx_buf;

20 $rx_buf = 0;

21 end

22 if $buf >= n then

23 break;

24 end

25 await USART_RX;

26 end

27 end

28

29 // APPLICATION

30

31 loop do

32 var[255] byte buf;

33 await Usart_RX(&buf, 10);

34 // uses buf

35 end

Listing 8. The USART driver now exposes a safer
(and more friendly) interface to the application. (The
driver and application are actually in separate files.)

Support for ISRs in the same language and memory
space of the application allows programmers to choose
between efficiency and safety during development by
providing multiple interfaces with different levels of ab-
straction.

3.3 Energy-Efficient Runtime

The language runtime now alternates between synchro-
nous, well-behaved execution, and asynchronous, unpre-
dictable ISRs. Since programs only execute from inter-
rupts, the runtime can now also enter in sleep mode
automatically to save energy, as depicted in Listing 9: It
first defines an input queue (ln 1) in which ISRs enqueue
new events (e.g., Listing 8, ln 12). The main function gen-
erates thes boot reaction once to start the program (ln 3),

5

REBLS’18, November 04, 2018, Boston, MA, USA Francisco Sant’Anna and Alexandre Sztajnberg

1 evt_t queue[MAX]; // input queue

2 void main () {

3 ceu_start(); // "boot reaction"

4 while (1) {

5 evt_t evt;

6 if (ceu_input(&evt)) { // queries input queue

7 ceu_sync(&evt); // executes synchronous

8 } else {

9 ceu_pm_sleep(); // nothing to execute

10 }

11 }

12 }

Listing 9. Overall runtime architecture of Céu with
an input queue (ln 1), event loop (ln 4–11), synchro-
nous execution (ln 7), and standby mode (ln 9).

which will spawn the ISRs and reach the first await state-
ments in the multiple trails of the program. Then, the
runtime enters the event loop (ln 4–11), which queries
the input queue (ln 6) to awake the program (ln 7). ISRs
execute asynchronously, emitting input events into the
queue, which will be queried in subsequent iterations of
the loop. Note that if the queue is empty, the runtime
enters in sleep mode to save energy (ln 9), and will only
awake on a new hardware interrupt.
Microcontrollers typically support multiple levels of

sleep modes, each progressively saves more energy at
the expense of keeping less functionality active. As an
example, the least efficient mode of the ATmega328P [2]
allows for timer interrupts since it keeps its internal
clock active, while the most efficient mode turns off all
peripherals and can only awake from external interrupts
(e.g., GPIO falling edge).

Our runtime supports three compile-time configura-
tions for ceu pm sleep (ln 9). The first configuration is
a nop that simply keeps the event loop running all the
time without ever sleeping. This configuration is useful
when introducing new platforms. The second configu-
ration chooses a (inefficient) sleep mode that keeps all
peripherals active. Although this configuration is not
the most energy efficient, at least, it requires no extra
assistance from the drivers. The third sleep configuration
keeps a bit vector of the active drivers during runtime
and chooses the most efficient mode, querying this vector
every time ceu pm sleep is called.

The third configuration achieves optimal efficiency but
requires a tight interaction between the drivers and the
power manager. Listing 10 unveils the power manager
(ln 1–18), the modified USART driver (ln 20–29), and
an illustrative application (ln 31–43). The application is
a loop that initially awaits in parallel for a button press
(ln 36) or receiving 10 bytes (ln 39). Let’s call this state
STATE-A. The par/or terminates when either of them

1 // POWER MANAGER (in C)

2

3 enum {

4 CEU_PM_ADC,

5 CEU_PM_TIMER1,

6 CEU_PM_USART,

7 ...

8 };

9

10 void ceu_pm_sleep (void) {

11 if (ceu_pm_get(CEU_PM_USART) || ...) {

12 sleep_mode_1(...);

13 } else if (ceu_pm_get(CEU_PM_ADC)) {

14 sleep_mode_2(...);

15 } else {

16 sleep_mode_3(...);

17 }

18 }

19

20 // USART DRIVER (in Ceu)

21

22 code Usart_RX (var&[] byte buf, var int n) -> none

23 do

24 {ceu_pm_set(CEU_PM_USART, 1);}

25 do finalize with

26 {ceu_pm_set(CEU_PM_USART, 0);}

27 end

28 ... // same as in Listing 7

29 end

30

31 // APPLICATION (in Ceu)

32

33 input high/low PIN_02; // connected to a button

34 loop do

35 par/or do

36 await PIN_02; // STATE-A

37 with

38 var[255] byte buf;

39 await Usart_RX(&buf, 10); // STATE-A

40 // uses buf

41 end

42 await PIN_02; // STATE-B

43 end

Listing 10. Interaction between the power manager,
USART driver, and application. (Each code is actually
in a separate file.)

occurs, going to the next line that awaits another button
click (ln 42). Let’s call this other state STATE-B. After
another button click, the program loops back to STATE-A.
While in STATE-A, the program can awake from USART
and external interrupts, which means that the power
manager should choose a sleep mode in which the USART
remains operational. While in STATE-B, only external
interrupts should awake the program, which means that
the power manager may use the most efficient sleep mode.

6

Where Do Events Come From? REBLS’18, November 04, 2018, Boston, MA, USA

The power manager enumerates all microcontroller’s
peripherals (ln 3–8) and, before sleeping, queries their
states (ln 11,13) to choose the most appropriate sleep
mode (ln 12,14,16). The USART driver now needs to be
extended with calls to enable and disable the USART
state inside the power manager: just before awaiting
(ln 28), the driver enables the USART (ln 24) and creates
a finalization block to disable it on termination (ln 25–
27). Termination may occur either directly after receiving
the requested number of bytes, or indirectly if the par/or
in the application terminates on a button click (ln 36).

Note that applications never need to be explicit about
energy management to take advantage of sleep modes.
All happens automatically because of the synchronous
reactive execution model and the interaction between
the drivers and energy-aware runtime of Céu. Our initial
tests show optimal energy savings for applications in idle
states [11].

4 Conclusion
We extend the synchronous language Céu with asynchro-
nous interrupt service routines (ISRs) to take control
of the whole event loop in reactive systems, from input
generation up to output effects. ISRs empower reactive
applications to also implement their own device drivers
and self-generate inputs, bypassing the need for a host en-
vironment. However, asynchronous execution confronts
the well-behaved semantics of synchronous languages
with possible race conditions. To mitigate this threat,
we extend the static concurrency checks of Céu to also
detect data races between ISRs and the application.

Our approach for developing drivers relies on the lex-
ical structured mechanisms of Céu, such as parallel
compositions and abortion of lines of execution, to offer
stronger guarantees. For instance, the visibility of drivers
can be delimited to scoped blocks to avoid resource leaks.
The same mechanism allows drivers to signal the power
manager that associated peripherals are no longer re-
quired, allowing applications to use optimal sleep modes
automatically.

Acknowledgments
This material is based upon work supported by the
National Science Foundation under Grant No. nnnnnnn
and Grant No. mmmmmmm. Any opinions, findings,
and conclusions or recommendations expressed in this
material are those of the author and do not necessarily
reflect the views of the National Science Foundation.

References
[1] A. Adya et al. 2002. Cooperative Task Management With-

out Manual Stack Management. In Proceedings of ATEC’02.
USENIX Association, 289–302.

[2] Atmel. 2011. ATmega328P Datasheet.

[3] Gérard Berry. 1993. Preemption in Concurrent Systems.. In
FSTTCS (LNCS), Vol. 761. Springer, 72–93.

[4] Frédéric Boussinot and Robert De Simone. 1991. The Esterel

language. Proc. IEEE 79, 9 (Sep 1991), 1293–1304.
[5] David Gay et al. 2003. The nesC Language: A Holistic Ap-

proach to Networked Embedded Systems. In Proceedings of
PLDI’03. 1–11.

[6] Jason Hill et al. 2000. System architecture directions for

networked sensors. SIGPLAN Notices 35 (November 2000),
93–104. Issue 11.

[7] Kevin Klues et al. 2007. Integrating Concurrency Control

and Energy Management in Device Drivers. In Proceedings
of SOSP’07. ACM, New York, NY, USA, 251–264.

[8] Ingo Maier, Tiark Rompf, and Martin Odersky. 2010. Depre-

cating the observer pattern. Technical Report.
[9] Guido Salvaneschi et al. 2014. REScala: Bridging between

object-oriented and functional style in reactive applications.

In Proceedings of Modularity’13. ACM, 25–36.
[10] Francisco Sant’Anna et al. 2013. Safe System-level Con-

currency on Resource-Constrained Nodes. In Proceedings of
SenSys’13. ACM.

[11] Francisco Sant’Anna et al. 2018. WIP: Transparent Standby
for Low-power, Resource-constrained Embedded Systems: A
Programming Language-based Approach. In Proceedings of

the LCTES’18. ACM, New York, NY, USA, 94–98.

7

	Abstract
	1 Introduction
	2 Céu: Structured Synchronous Reactive Programming
	3 Interrupt Service Routines in Céu
	3.1 Scoped ISRs
	3.2 Safe Shared-Memory Concurrency
	3.3 Energy-Efficient Runtime

	4 Conclusion
	Acknowledgments
	References

