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Francisco Sant’Anna
Department of Computer Science

Rio de Janeiro State University (UERJ)
Rio de Janeiro, Brazil
francisco@ime.uerj.br

Abstract—We present a qualitative case study of rewriting
the video game Pingus from C++ to the structured synchronous
reactive language CÉU. CÉU supports reactive control-flow
primitives that eliminate callbacks and let programmers write
code in direct and sequential style. Structured reactivity helps
describing complex control-flow relationships in the game logic
more concisely. We show gains in productivity for four behav-
iors in Pingus through a qualitative analysis of the proposed
implementations in CÉU in comparison to the originals in
C++. We also categorize the behaviors in recurrent control-
flow patterns that likely apply to most games.
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I. INTRODUCTION

Pingus is an open-source puzzle-platform video game
based on Lemmings. The objective of the game is to
guide a group of penguins through a number of obstacles
towards a designated exit (Figure 1). Pingus is developed
in standard object-oriented C++, “the lingua franca of game
development” [14]. The codebase1 is about 40.000 lines of
code (locs), divided into the engine, level editor, auxiliary
libraries, and the game logic itself.

According to Tim Sweeney (of Unreal Engine fame),
about half the complexity in game development resides in
simulation (aka game logic), but which only accounts for
10% of the CPU budget [24]. The high development costs
contrasting with the low impact on performance appeals for
alternatives with productivity in mind, especially considering
that it is the game logic that varies the most between
projects. Sweeney states that “will gladly sacrifice 10% of
our performance for 10% higher productivity”.

Object-oriented games rely on the observer pattern [14]
to handle events from the environment (e.g., key presses
and timers) and also as a notification mechanism between
entities in the game logic. The observers are short-lived
callbacks that have to execute as fast as possible to keep
the game reactive to incoming events in real time. For this
reason, callbacks cannot use long-lasting locals and loops,
which are elementary capabilities of classical structured
programming [2, 12, 18]. In this sense, callbacks actually

1Official Pingus repository: github.com/Pingus/pingus/

Figure 1. Pingus gameplay.

disrupt structured programming, becoming “our generation’s
goto”.2

In this work, we advocate structured synchronous reactive
programming (SSRP) as a more productive alternative for
game logic development. We present a qualitative case study
of rewriting Pingus from C++ to CÉU. CÉU [20] is a Esterel-
based [5] programming language that originally targets em-
bedded soft real-time systems. It aims to offer a concurrent,
safe, and expressive alternative to C. SSRP lets developers
write code in direct style, recovering from the inversion
of control imposed by event-driven execution [2, 12, 18].
CÉU supports logical parallelism with a resource-efficient
implementation in terms of memory and CPU usage. The
runtime is single threaded and does not rely on garbage
collection for memory management [19]. Existing work
in the context of embedded sensor networks evaluates the
expressiveness of CÉU in comparison to event-driven code
in C and attests a reduction in source code size (around
25%) with a small increase in memory usage (around 5–
10%) and comparable CPU responsiveness [19]. CÉU has

2“Callbacks as our Generations’ goto Statement”: tirania.org/blog/
archive/2013/Aug-15.html
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// Declarations
input <type> <id> // declares an external input event
event <type> <id> // declares an internal event
var <type> <id> // declares a variable

// Event handling
<id> = await <id> // awaits event and assigns received value
emit <id>(<exp>) // emits event passing a value

// Control flow
<stmt> ; <stmt> // sequence
if <exp> then <stmt> else <stmt> end // conditional
loop do <stmt> end // repetition
do <stmt> end // explicit block

// Logical parallelism
par/or do <stmt> with <stmt> end // terminates with any
par/and do <stmt> with <stmt> end // terminates with all

// Abstractions
code <id> (<pars>) -> <type> do <stmt> end
<id> = await <id>(<args>) // executes and awaits
spawn <id>(<args>) [in <id>] // executes and continues
pool[<num>] <id> <id> // holds instances

// Assignment & Integration with C/C++
<id> = <exp> // assigns a value to a variable
_<id>(<args>) // calls C/C++ (id starts with ‘ ’)

Listing 1. A compact reference of CÉU.

also been used in the context of multimedia systems [22]
and games [21].

Our case study discusses the gains in productivity for four
selected behaviors in the game logic of Pingus rewritten
in CÉU. We present an in-depth qualitative analysis of the
proposed solutions in comparison to the original implemen-
tations in C++. Not all techniques result in reduction of
locs (especially considering the verbose syntax of CÉU), but
have other effects such as eliminating shared variables and
dependencies between classes. We also identify four control-
flow patterns that likely apply to most games: Finite State
Machines, Continuation Passing, Dispatching Hierarchies,
and Lifespan Hierarchies. In this context, a control-flow
pattern is a recurring technique to describe execution de-
pendency and/or explicit ordering between statements.

We employed a live code rewrite, i.e., starting from the
original codebase in C++, we reimplemented it piece-by-
piece in CÉU without breaking the game compilation and
execution. This approach shows the feasibility of a partial
and gradual translation between the languages, and also the
possibility of keeping performance-critical functionality in
C++, such as for heavy graphical primitives.

II. AN OVERVIEW OF CÉU

CÉU is a synchronous reactive language in which pro-
grams evolve in a sequence of discrete reactions to external
events with the characteristics that follow:

• Reactive: code only executes in reactions to events.

1input void BUTTON;
2output bool LED;
3

4code Blink (var int period) -> NEVER do
5loop do
6emit LED(true);
7await (period) ms;
8emit LED(false);
9await (period) ms;
10end
11end
12

13spawn Blink(500);
14par/or do
15await BUTTON;
16with
17await 1h;
18end

Listing 2. An example in CÉU that blinks an LED every 500ms in the
background and awaits either a button click or 1 hour to terminate.

• Structured: programs use structured control mecha-
nisms, such as spawn and await (to create and suspend
activities).

• Synchronous: reactions run atomically and to comple-
tion on each line of execution, i.e., there’s no implicit
preemption or real parallelism.

CÉU is designed for control-intensive applications, support-
ing concurrent lines of execution, known as trails, and in-
stantaneous broadcast communication through events. CÉU
provides an await statement that blocks the current running
trail allowing the program to execute its other trails; when all
trails are blocked, the reaction terminates and control returns
to the environment to process upcoming events. Listing 1
shows a compact reference of CÉU.

Listing 2 shows a simple example in the context of
embedded systems that blinks an LED and terminates either
on a button press or after 1 hour of execution. The example
declares two external events (ln 1–2): an input that represents
a button and an output that represents an LED. The blink
behavior uses a code abstraction (ln 4–11) which is similar
to a coroutine or fiber [2], but which can interact directly
with the environment through await statements (ln 7,9). The
spawn statement (ln 13) instantiates a Blink abstraction to
execute in the background and the program then creates two
trails to await two events at the same time (ln 14–18). Since
the composition is a par/or, it will terminate when either
of the two events occur, proceeding to the end of the file
and consequently also terminating the program.

In CÉU, every execution path within loops must contain at
least one await statement to an external input event [4, 19].
On the one hand, CÉU shares a restriction with standard
event-driven programming: computations that take a non-
negligible time to run (e.g., cryptography or image pro-
cessing algorithms) violate the zero-delay hypothesis, and
thus cannot be directly implemented. On the other hand,
all reactions to the external environment are guaranteed to
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be computed in bounded time [23], ensuring that games
progress with time.

III. THE PINGUS CODEBASE AND REWRITING PROCESS

In Pingus, the game logic accounts for almost half the size
of the codebase3: 18.173 from 39.362 locs (46%) spread
across 272 files. However, about half of the game logic
relates to non-reactive code, such as dealing with config-
urations and options, saved games and serialization, maps
and level descriptions, string formatting, collision detection,
graph algorithms, etc. This part remained unchanged in our
rewrite and relies on the seamless integration between CÉU
and C/C++ [19]: the type systems are compatible and the
integration happens at the source code level. This enables
accessing data and calling C/C++ from CÉU and vice-
versa. Therefore, we only rewrote 9.186 locs spread across
126 files4. In order to only consider relevant code in the
analysis, we then removed all headers, declarations, trivial
getters & setters, and other innocuous statements, resulting
4.135 condensed locs spread across 70 implementation files
originally written in C++4. We did the same with the
implementation in CÉU, resulting in 3.697 condensed locs4.
Figure 2 summarizes the effective game logic codebase in
the two implementations.

Although the analysis in this work is qualitative, the rows
with lower ratio numbers in Figure 2 do correlate with the
parts of the game logic that we consider more susceptible to
SSRP. For instance, the Pingu behavior (row 4, ratio 0.80)
contains complex animations that are affected by timers,
game rules, and user interaction. In contrast, the Option
screen (row 9, ratio 0.97) is a simple UI grid with trivial
mouse interactions.

The rewriting process consisted of identifying sets of
callbacks in C++ implementing control flow in the game
and translating them to CÉU using appropriate structured
constructs. As an example, a double mouse click is charac-
terized by a first click, followed by a maximum amount
of time, followed by a second click. This behavior de-
pends on different events (clicks and timers) which have
to occur in a particular order. In C++, the implementation
involves callbacks crossing reactions to successive events
which manipulate state variables explicitly. As a general
rewriting rule, we identify control-flow behaviors in the
C++ codebase by looking for class state members with
identifiers resembling verbs, statuses, and counters (e.g.,
pressed, particle_thrown, mode, and delay_count).
Good chances are that such variables encode some form
of control-flow progression that crosses multiple callback
invocations. Not all state follows these conventions, but they
helped finding classes that are heavy on control flow quickly
at the beginning of the process.

3We used SLOCCount to count only non-blank, non-comment lines in
the codebase: www.dwheeler.com/sloccount/

4 Effective codebase: github.com/an000/p/tree/master/

IV. CONTROL-FLOW PATTERNS & CASE STUDIES

During the rewriting process, we have identified four
abstract cause/effect control-flow patterns which likely apply
to most games:

1) Finite State Machines: Event occurrences lead to tran-
sitions between states and trigger actions comprising
the behavior of a game entity.

2) Continuation Passing: The completion of a long-
lasting activity in the game may carry a continuation,
i.e., some action to execute next.

3) Dispatching Hierarchies: Entities form a dispatching
hierarchy in which a container that receives a stimulus
automatically forwards it to its managed children.

4) Lifespan Hierarchies: Entities form a lifespan hierar-
chy in which a terminating container entity automati-
cally destroys its managed children.

We describe representative game behaviors in detail dis-
tributed in the four patterns and analyze their implementa-
tions in C++ and CÉU.

A. Finite State Machines

Event occurrences lead to transitions between states and
trigger actions comprising the behavior of a game entity.

1) Case Study: Detecting Double-Clicks in the Armaged-
don Button: In Pingus, a double click in the Armageddon
button at the bottom right of the screen literally explodes all
pingus.5

Listing 3 shows the C++ implementation for the class
ArmageddonButton with methods for rendering the button
and handling mouse and timer events. The code in the figure
focus on the double click detection and hides unrelated
parts with <...>. The methods update (ln 14–26) and
on_click (ln 28–34) are examples of short-lived callbacks,
which are pieces of code that execute atomically in reaction
to external input events. The callback on_click reacts to
mouse clicks detected by the base class RectComponent

(ln 2), while the callback update continuously reacts to the
passage of time, frame by frame. The class first initializes
the variable pressed (ln 3) to track the first click (ln 32).
It also initializes the variable press_time (ln 4) to count
the time since the first click (ln 16–17). If another click
occurs within 1 second, the class signals the double click
to the application (ln 29–30). Otherwise, the pressed and
press_time state variables are reset (ln 18–21). Figure 3
illustrates how we can model the double-click behavior in
C++ as a state machine. The circles represent the state of
the variable pressed, and the arrows represent the callbacks
manipulating it. Note in Listing 3 how the accesses to the
state variables are spread across the entire class: the distance
between the initialization of pressed (ln 3) and the last
access to it (ln 32) is over 40 lines in the original file.
Arguably, this dispersion of code across methods makes the

5Double click animation: github.com/an000/p/#1
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Path Ceu C++ Ceu/C++ Description
------------ ---- ---- ---- ----------------------------------------

1 game/ 2064 2268 0.91 the main gameplay
2 ./ 710 679 1.05 main functionality
3 objs/ 470 478 0.98 world objects (tiles, traps, etc)
4 pingu/ 884 1111 0.80 pingu behaviors
5 ./ 343 458 0.75 main functionality
6 actions/ 541 653 0.83 pingu actions (bomber, climber, etc)
7 worldmap/ 468 493 0.95 campaign worldmap
8 screens/ 1109 1328 0.84 menus and screens
9 option/ 347 357 0.97 option menu
10 others/ 762 971 0.78 other menus and screens
11 misc/ 56 46 1.22 miscellaneous functionality

---- ---- ----
3697 4135 0.89

Figure 2. The Pingus codebase directory tree.

1 ArmageddonButton::ArmageddonButton(<...>):
2 RectComponent(<...>),
3 pressed(false); // button is not initially pressed
4 press_time(0); // how long since 1st click?
5 <...>
6 {
7 <...>
8 }
9

10 void ArmageddonButton::draw (<...>) {
11 <...>
12 }
13

14 void ArmageddonButton::update (float delta) {
15 <...>
16 if (pressed) {
17 press_time += delta;
18 if (press_time > 1.0f) {
19 pressed = false; // give up, 1st click was
20 press_time = 0; // too long ago
21 }
22 } else {
23 <...>
24 press_time = 0;
25 }
26 }
27

28 void ArmageddonButton::on_click (<...>) {
29 if (pressed) {
30 send_armageddon_event();
31 } else {
32 pressed = true;
33 }
34 }

Listing 3. C++: Detecting double-clicks in the Armageddon button.

understanding and maintenance of the double-click behavior
more difficult. Also, even though the state variables are
private, unrelated methods such as draw, which is defined in
middle of the class (ln 10–12), can potentially access them.

CÉU supports structured constructs to deal with events,
aiming to eradicate explicit manipulation of state variables
for control-flow purposes. In Listing 4, the loop to detect
double clicks (ln 4–12) awaits the first click (ln 5) and then,
awaits either a 1-second timeout (ln 7) or the second click

1 do
2 var RectComponent but = <...>;
3 <...>
4 loop do
5 await but.on_click;
6 par/or do
7 await 1s;
8 with
9 await but.on_click;

10 break;
11 end
12 end
13 <...>
14 emit game.armageddon;
15 end

Listing 4. CÉU: Detecting double-clicks in the Armageddon button.

Figure 3. State machine for detecting double-clicks in the Armageddon
button.

(ln 9). If the second click occurs within 1 second, the break
terminates the loop (ln 10) and the emit in sequence signals
the double click to the application (ln 14). Otherwise, the
par/or block as a whole aborts after 1 second and the loop
restarts, falling back to the first click await (ln 5). Double
click detection in CÉU does not rely on state variables and is
entirely self-contained in the loop body. Also, those 9 lines
of code only detect the double click, leaving the actual effect
(ln 14) as well as all unrelated code (such as redrawing the
button) to happen outside the loop.

The await statement of CÉU allows for nested control-
flow statements to suspend execution while retaining all en-
closing state alive, such as local variables and next statement
to execute. Then, a subsequent reaction to an event resumes
execution normally. In contrast, method callbacks in object-
oriented programming have a single entry point at the top
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Figure 4. Assigning the Bomber action to a pingu.

Action Ceu C++ Explicit State
--------- ---- ---- -----------------
Bomber 23 50 4 state variables
Bridger 75 100 2 state variables
Drown 6 15 1 state variable
Exiter 7 22 2 state variables
Splashed 6 19 2 state variables

Figure 5. Pingus actions in CÉU and C++ in terms of locs and state
variables.

level of the class, in which only instance members remain
active between invocations. In particular, locals and loops
cannot persist across invocations.

2) Summary & Pattern Uses in Pingus: In comparison
to explicit state machines, the structured constructs of CÉU
introduce some advantages as follows:

• They encode all states with direct sequential code,
eliminating callbacks and shared state variables for
control-flow purposes.

• They handle all states (and only them) in the same
contiguous block, improving code encapsulation.

Object-oriented games also adopt the state pattern to model
state machines with subclasses describing each possible
state [14]. However, this approach is not fundamentally
different from Pingus’ use of switch or if branches to
decode state.

In Pingus, the player may assign actions to specific
pingus, as illustrated in Figure 4. The Bomber action ex-
plodes the clicked pingu, throwing particles around and
also destroying the terrain under its radius.6 We model
the explosion animation with a sequential state machine
with effects associated to specific frames, such as playing a
sound and throwing the particles. Pingus supports other 15
actions in the game. Five of them implement at least one
state machine and are considerable smaller in CÉU in terms
of locs (Figure 5). For the other 11 actions without state
machines, the reduction in locs is negligible. This asymmetry
illustrates the gains in expressiveness when describing state
machines in direct style.

Among all 65 implementation files in CÉU, we found
29 cases in 25 files that use structured mechanisms to

6Bomber action animation: github.com/an000/p/#2

substitute states machines. They typically manifest as await
statements in sequence (e.g., ln 5,9 in Listing 4).

B. Continuation Passing

The completion of a long-lasting activity in the game may
carry a continuation, i.e., some action to execute next.

1) Transition from Story to Credits to Worldmap Screen:
The campaign world map has clickable blue dots in the two
extremes of the map road to show introductory and closing
ambience stories, respectively. For introductory stories, the
game returns to the world map after showing the story
pages. For closing stories, the game also shows a Credits
screen before returning to the world map.7 From the click
in the story dot until the return to the world map, the game
animates the story with a timer-based scrolling and also
reacts to user input to advance it.

In C++, the class StoryDot in Listing 5 (ln 1–12) first
reads the level file (ln 5) to check whether it is a closing
story and should, after termination, show the Credits screen.
The boolean variable show_credits (ln 2,5,10) is passed
to the class StoryScreen (ln 10) and represents the screen
continuation, i.e., what to do after showing the story. The
class StoryScreen (not shown) then forwards the continu-
ation even further to the auxiliary class StoryScreenComp
(ln 16–40). When the method next_text has no story
pages left to display (ln 32–38), it decides where to go next,
depending on the continuation flag show_credits (ln 33).

In CÉU, the loop of Listing 6 controls the flow between
the screens as a direct sequence of statements. We first
invoke the Worldmap (ln 2), which shows the map and lets
the player interact with it (e.g., walking around) until a dot is
clicked. If the player selects a story dot (ln 4–9), we invoke
the Story and await its termination (ln 5). After showing the
story, we check the returned values (ln 6) to perhaps show
the Credits screen (ln 8). The enclosing loop restores the
Worldmap and repeats the process.

Figure 6 illustrates the continuation-passing style of C++
and the direct style of CÉU for screen transitions:

1) Main Loop −→ Worldmap:
• C++ uses an explicit stack to push the Worldmap

screen (not shown in Listing 5).
• CÉU invokes the Worldmap screen expecting a

return value (Listing 6, ln 2).
2) Worldmap (blue dot click) −→ Story:

• C++ pushes the Story screen passing the contin-
uation flag (Listing 5, ln 10).

• CÉU stores the Worldmap return value and in-
vokes the Story screen (Listing 6, ln 2,5).

3) Story −→ Credits:
• C++ replaces the current Story screen with the
Credits screen (Listing 5, ln 34).

7Credits screen animation: github.com/an000/p/#4
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Figure 6. Continuation (C++) vs Direct (CÉU) Styles.

1 StoryDot::StoryDot(FileReader& reader) :
2 show_credits(false), // do not show by default
3 {
4 <...>
5 reader.read("credits", show_credits);
6 } // from file
7

8 void StoryDot::on_click() {
9 <...>

10 push(<StoryScreen>(show_credits));
11 <...>
12 }
13

14 // / class separator ///
15

16 StoryScreenComp::StoryScreenComp (<...>) :
17 show_credits(show_credits),
18 <...>
19 {
20 <...>
21 }
22

23 <...> // draw and update page
24

25 void StoryScreenComp::next_text() {
26 if (!displayed) {
27 <...>
28 } else {
29 <...>
30 if (!pages.empty()) {
31 <...>
32 } else {
33 if (show_credits) {
34 replace(<Credits>(<...>));
35 } else {
36 pop();
37 }
38 }
39 }
40 }

Listing 5. C++: Transition from Story to Credits and Worldmap screen.

• CÉU invokes the Credits screen after the await
Story returns (Listing 6, ln 8).

4) Credits −→ Worldmap:

1 loop do
2 var int ret = await Worldmap();
3 if ret==CREDITS or ret==BACK then
4 <...>
5 var bool is_click = await Story();
6 if is_click and ret==CREDITS then
7 <...>
8 await Credits();
9 end

10 else
11 <...>
12 end
13 end

Listing 6. CÉU: Transition from Story to Credits and Worldmap screen.

• C++ pops the Credits screen, going back to the
Worldmap screen (not shown in Listing 5).

• CÉU uses an enclosing loop to restart the process
(Listing 6, ln 1–13).

In contrast with C++, the screens in CÉU are decoupled
from each other and only the Main Loop touches them:
the Worldmap has no references to Story, which has no
references to Credits. Changing the screen arrangements
is a matter of adjusting the main loop only.

2) Summary & Pattern Uses in Pingus: The direct
style of CÉU has some advantages in comparison to the
continuation-passing style of C++:

• It uses structured control flow (i.e., sequences and
loops) instead of explicit data structures (e.g., stacks)
and continuation variables (e.g. boolean flags).

• The activities in sequence are decoupled and do not
hold references to one another.

• A single parent class describes the flow between the
activities in a self-contained block of code.

Continuation passing typically controls the overall struc-
ture of games such as screen transitions in menus and
level progressions. In Pingus, CÉU adopts the direct style
technique in five cases involving screen transitions: the main
menu, the level menu, the level set menu, the world map
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Figure 7. Dispatching chain for update.

1 class Bomber : public Action {
2 <...>
3 Sprite sprite;
4 }
5

6 Bomber::Bomber (<...>) : <...> {
7 sprite.load(<...>);
8 <...>
9 }

10

11 void Bomber::update () {
12 sprite.update();
13 }
14

15 void Bomber::draw () {
16 <...>
17 sprite.draw();
18 }

Listing 7. C++: Bomber action draw and update dispatching.

loop, and the gameplay loop. It also uses the same technique
for the loop that switches between pingu actions during
gameplay (e.g., walking to falling and back to walking).

C. Dispatching Hierarchies

Entities form a dispatching hierarchy in which a container
that receives a stimulus automatically forwards it to its
managed children.

1) Case Study: Bomber Action draw and update Dis-
patching: In C++, the class Bomber in Listing 7 declares
a sprite member (ln 3) to handle its animation frames.
The Sprite class is part of the game engine and knows
how to update and render itself. However, the Bomber still
has to respond to update and draw requests from the
game and forward them to the sprite (ln 11–13 and 15–
18). To understand how the update callback flows from
the original environment stimulus to the game down to the
sprite, we need to follow a long chain of 7 method dispatches
(Figure 7):

1) ScreenManager::display in the main game loop
calls ScreenManager::update when starting a new
frame.

2) ScreenManager::update calls screen->update

for the active game screen (i.e., a GameSession

1 code Bomber (void) -> ActionName do
2 <...>
3 var Sprite sprite = spawn Sprite(<...>);
4 <...>
5 end

Listing 8. CÉU: Bomber action draw and update dispatching.

instance, considering the screen in which the Bomber

appears).
3) GameSession::update calls world->update.
4) World::update calls objs->update for each object

in the world.
5) PinguHolder::update calls pingu->update for

each pingu alive.
6) Pingu::update calls action->update for the ac-

tive pingu action.
7) Bomber::update calls sprite.update.

Sprite::update finally updates the animation
frame.

Each dispatching step in the chain is indeed necessary
considering the typical OO game architecture employed in
Pingus:

• With a single assignment to screen, one can easily
deactivate the current screen and redirect all dispatches
to a new screen (step 2).

• The World class manages and dispatches events to all
game entities with a common interface WorldObj, such
as the pingus and traps (step 4).

• Since it is common to iterate only over the pingus
(vs. all world objects), the container PinguHolder

manages all pingus (step 5).
• Since a single pingu can change its actions during

lifetime, the action member decouples them with
another level of indirection (step 6).

• Sprites are part of the game engine and are reusable
everywhere (e.g., UI buttons, world objects, etc.), so it
is also convenient to decouple them from actions (step
7).

Like update, the draw callback also flows through a similar
dispatching hierarchy until reaching the Sprite class.

In CÉU, the Bomber abstraction presented in Listing 8

SBC – Proceedings of SBGames 2018 — ISSN: 2179-2259 Computing Track – Full Papers
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spawns a Sprite animation instance on its body (ln 3).
However, the Sprite abstraction in CÉU can react directly
to external update and draw events, bypassing the program
hierarchy entirely. Events in CÉU are broadcasted to the
entire application in lexical order, i.e., an abstraction that
appears first in the source code (e.g., ln 3) reacts before
another one that appears second (e.g., hidden in ln 4).
This rule preserves determinism and also conforms to the
program static hierarchy. While (and only while) the bomber
abstraction is alive, the sprite animation remains alive and
reacts to the update and draw events (see also Section IV-D
on Lifespan Hierarchies). The radical decoupling between
the program hierarchy and reactions to events eliminates
dispatching chains entirely.

2) Summary & Pattern Uses in Pingus: Passive entities
subjected to hierarchies require a dispatching architecture
that makes the reasoning about the program harder:

• The full dispatching chain may go through dozens of
files.

• The dispatching chain may interleave between classes
specific to the game and also classes from the game
engine (possibly third-party classes).

In C++, the update subsystem touches 39 files with around
100 lines of code just to forward update methods through
the dispatching hierarchy. For the drawing subsystem, 50
files with around 300 lines of code. The implementation
in C++ also relies on dispatching hierarchy for resize

callbacks, touching 12 files with around 100 lines of code.
Most of this code is eliminated in CÉU since abstractions
can react directly to the environment, not depending on
hierarchies spread across multiple files.

Note that dispatching hierarchies cross game engine code,
suggesting that most games also rely heavily on this control-
flow pattern. In the case of the Pingus engine, we rewrote 9
of its files with a reduction from 515 to 173 locs, mostly due
to dispatching code removal (not listed in Figure 2, since it’s
engine code).

D. Lifespan Hierarchies

Entities form a lifespan hierarchy in which a terminating
container entity automatically destroys its managed children.

1) Case Study: Dynamic Pingus Lifecycle: A pingu is
a dynamic entity created periodically and destroyed under
certain conditions, such as falling from a high altitude.8

In C++, the class PinguHolder in Listing 9 is
a container that holds all alive pingus. The method
PinguHolder::create_pingu (ln 1–6) is called period-
ically to create a new Pingu and add it to the pingus

collection (ln 3–4). The method PinguHolder::update

(ln 8–18) checks the state of all pingus on every frame,
removing those with the dead status (ln 12–14). Note that if
the programmer disregards the call to remove, a dead pingu

8Death of pingus animation: github.com/an000/p/#5

1 Pingu* PinguHolder::create_pingu (<...>) {
2 <...>
3 Pingu* pingu = new Pingu (<...>);
4 pingus.push_back(pingu);
5 <...>
6 }
7

8 void PinguHolder::update() {
9 <...>

10 while(pingu != pingus.end()) {
11 (*pingu)->update();
12 if ((*pingu)->status() == DEAD) {
13 pingu = pingus.remove(pingu);
14 }
15 <...>
16 ++pingu;
17 }
18 }

Listing 9. C++: Managing the pingus lifecycle.

1 code Game (void) do
2 <...>
3 pool[] Pingu pingus;
4 code Pingu_Spawn (<...>) do
5 <...>
6 spawn Pingu(<...>) in pingus;
7 end
8 <...> // code invoking Pingu Spawn
9 end

10

11 code Pingu (<...>) do
12 <...>
13 loop do
14 await game.update;
15 if Pingu_Is_Out_Of_Screen() then
16 <...>
17 escape PS_DEAD;
18 end
19 end
20 end

Listing 10. CÉU: Managing the pingus lifecycle.

would remain in the collection and still update on every
frame (ln 11). Since the draw behavior for a dead pingu
is innocuous, the death could go unnoticed when testing it
but the program would keep consuming memory and CPU
time. This problem is known as the lapsed listener [14] and
also occurs in languages with garbage collection: a container
typically holds a strong reference to a child (sometimes the
only reference to it), and the runtime cannot magically detect
it as garbage. Hence, entities with dynamic lifespan always
require explicit matching add and remove calls associated
to a container (ln 4,13).

CÉU supports pool declarations to hold dynamic abstrac-
tion instances. In addition, the spawn statement supports
a pool identifier to associate a new instance with a pool.
The game screen in Listing 10 spawns a new Pingu on
every invocation of Pingu_Spawn (ln 4–7). The spawn

statement (ln 6) specifies the pool declared at the top-level
block of the game screen (ln 3), attaching the scope of the
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Figure 8. Lifespan of dynamic instances.

pingu to that block. Since pools are also subject to lexical
scope, the lifespan of all dynamically allocated pingus is
constrained to the game screen (Figure 8). Lexical scopes
handle memory and event dispatching automatically for
static instances (Listing 8, ln 3) and also for pools. However,
the lifespan of a dynamic instance does not necessarily have
to match the lifespan of its associated pool. In CÉU, when
the execution block of a dynamic instance terminates, which
characterizes its natural termination, the instance is auto-
matically removed from its pool ( Figure 8, instances 1 and
3). Therefore, dynamic instances do not require any extra
bookkeeping related to containers or explicit deallocation.
To remove a pingu from the game in CÉU, we just need to
terminate its execution block according to the appropriate
conditions: The escape statement (Listing 10, ln 17) aborts
the execution block of the Pingu instance, removing it from
its associated pool automatically. Hence, a dynamic instance
that terminates naturally leaves no traces in the program.

2) Summary & Pattern Uses in Pingus: Lexical lifespan
for static instances and natural termination for dynamic
instances provide some advantages in comparison to lifespan
hierarchies through containers:

• Lexical scope makes an abstraction lifespan explicit
in the source code. All entities in a game have an
associated lexical lifespan.

• The memory for static instances is known at compile
time.

• Natural termination makes an instance innocuous and,
hence, susceptible to immediate reclamation.

• Instances (static or dynamic) never require explicit
manipulation of pointers/references.

The implementation in CÉU has over 200 static instanti-
ations spread across all 65 files. For dynamic entities, it de-
fines 23 pools in 10 files, with almost 96 instantiations across
37 files. Pools are used to hold explosion particles, levels and
level sets loaded from files, gameplay & worldmap objects,
and also UI widgets.

V. RELATED WORK

The control-flow patterns presented in this paper closely
relate to the GoF behavioral patterns [10], which are dis-
cussed in the context of video games in previous work [3,
14, 17]. The original Pingus in C++ uses variations of
the patterns state (Sections IV-A and IV-B), visitor (Sec-
tions IV-C and IV-D), and observer (to handle events in
general) as implementation techniques to achieve the desired
higher-level control-flow patterns described in the paper.
CÉU overcomes the need of behavioral patterns with support,
at the language level, for structured control-flow mechanisms
and event-based communication via broadcast.

A number of domain-specific languages, frameworks, and
techniques have been proposed for particular subsystems of
the game logic, such as animations [8, 15, 16], game state
and screen progression [13, 25], and behavior and AI mod-
eling [1, 11]. In Pingus, the adoption of CÉU is not restricted
to a specific subsystem. We employed CÉU at the very
core of the game for event dispatching (Section IV-C) and
memory management of entities (Section IV-D), eliminating
parts of the original game engine. We also implemented
all entity animations and behaviors (Section IV-A), and
screen transitions (Section IV-B) using the available control
mechanisms of CÉU. Furthermore, CÉU is a superset of
C targeting reactive systems in general, not only games,
and has also been successfully adopted in other domains,
such as wireless sensor networks [6, 19] and multimedia
systems [22].

Functional reactive programming (FRP) [9] contrasts with
structured synchronous reactive programming (SSRP) as a
complementary programming style for reactive applications.
We believe that FRP is more suitable for data-intensive
applications, while SSRP, for control-intensive applications.
On the one hand, FRP uses declarative formulas to specify
continuous functions over time, such as for physics or data
constraints among entities. On the other hand, describing
a sequence of steps or control-flow dependencies in FRP
requires to encode explicit state machines so that functions
can switch behavior depending on the current state. FRP
has been successfully used to implement a 3D first person
shooting game from scratch, but with some performance
considerations [7]. Although we do not provide a perfor-
mance evaluation (Pingus is not performance sensitive),
existing work on CÉU shows that it is comparable to C in
the context of embedded systems [19]. Nonetheless, given
the tight integration between CÉU and C/C++, critical parts
of games can be preserved in C++ if needed.

VI. CONCLUSION

We advocate Structured Synchronous Reactive Program-
ming as a productive alternative for game logic development.
We use the video game Pingus as a qualitative case study.
We compare the implementation of four game behaviors in
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C++ and CÉU and discuss how structured reactive mech-
anisms can eliminate callbacks and let programmers write
code in direct style. Ultimately, we rewrote about 1/4 of the
whole codebase (9.186 from 39.362 lines of code) which
comprises the core of the game logic that is susceptible to
structured reactive programming.

We categorize the behaviors in four recurrent control-
flow patterns: State machines are the workhorses of the
game logic, appearing in animations, AI behaviors, and input
handling. CÉU can encode states implicitly with sequential
statements, eliminating shared state variables and improv-
ing code encapsulation. Continuation passing controls the
overall structure of the game, such as screen transitions
and level progressions. Similarly to state machines, CÉU
describes the flow of the game as sequential statements
in self-contained blocks, eliminating explicit data structures
and continuation variables. Dispatching hierarchies dissem-
inate input events through the game entities and serve as a
broadcast communication mechanism. Event broadcasting is
at the core of the semantics of CÉU, allowing entities to react
directly to inputs and bypass the program hierarchy entirely.
Lifespan hierarchies manage the memory and visibility of
game entities through class fields and containers. In CÉU, all
entities have an associated lexical scope, similarly to local
variables with automatic memory management.

Overall, we consider that most difficulties in implement-
ing control-flow behavior in game logic is not inherent to this
domain, but a result of accidental complexity due to the lack
of structured abstractions and an appropriate concurrency
model to develop event-based applications.
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