
Céu: A Reactive Language for Wireless Sensor Networks

Francisco Sant’Anna
Departamento de Informática - PUC-Rio

fsantanna@inf.puc-rio.br

Abstract
CÉU is a system-level reactive language targeting Wire-

less Sensor Networks that poses an alternative to the predom-
inating event-driven and threaded-based systems. CÉU sup-
ports concurrent lines of execution that are allowed to share
variables. However, the static nature of CÉU enables a com-
pile time analysis that ensures safe and deterministic execu-
tion. The CÉU compiler generates single-threaded C code
that is comparable in size to handcrafted event-driven code.
1 Biography

Francisco Sant’Anna is a second year Ph.D. student at
PUC-Rio with expected graduation date in September, 2013.
His advisor is Roberto Ierusalimschy, associate professor at
PUC-Rio in the field of programming languages, and the
creator of the Lua language. His co-advisor is Noemi de
La Roque Rodriguez, associate professor at PUC-Rio in the
field of distributed systems.
2 Introduction

Three aspects have been used to compare system pro-
gramming languages for Wireless Sensor Networks: memory
usage, event processing (responsiveness), and energy con-
sumption [3].

We consider that safety is also an important aspect, as
motes must run for long periods without human intervention.
In our discussion, we confine the term safety to determinis-
tic and bounded execution (i.e. programs should not exe-
cute long loops). Current system languages for WSNs (e.g.
[6, 4, 2]) do not detect such safety properties, requiring the
programmer to perform exhaustive testing. For instance, pre-
emptive multithreading is non-deterministic by design, while
event-driven and cooperative multithreading are susceptible
to unbounded execution.

Finally, expressiveness is another key aspect, regarding
how programmers are able to write concise and maintainable

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
SenSys’11, November 1–4, 2011, Seattle, WA, USA.
Copyright 2011 ACM XXX-X-XXXXX-XXX-X ...$5.00

programs. Event-driven programming is intrinsically un-
structured, while cooperative and preemptive mutilthreading
require, respectively, explicit scheduling and synchroniza-
tion, besides all exercise related to the life cycle of threads.

In our thesis, we present CÉU, a reactive language in-
spired in Esterel [1] and FRP [5] that aims to improve the
safety and expressiveness of current system languages for
WSNs.

CÉU relies on a compile-time analysis to detect un-
bounded loops and concurrent access to variables. The
static analysis forbids any dynamic support in the language,
such as memory allocation, recursion, and dynamic loading.
However, this trade-off seems to be favorable in the context
of WSNs, as dynamic features (such as malloc) are discour-
aged due to the resource limitations and safety requirements.

WSNs applications typically react to multiple external
events concurrently (e.g. timers, radio message arrivals, etc).
CÉU supports multiple lines of execution that can handle dif-
ferent events in parallel. A line of execution can await an
event without loosing context information, such as locals and
the program counter.
3 The Language Céu

CÉU is a concurrent language in which multiple lines
of execution (known as trails) continuously react to input
events from the environment. Waiting for an event halts the
running trail until that event occurs. The environment broad-
casts occurring events to all active trails, which share a single
global time reference (an event itself).

The following example executes two trails in parallel that
show in leds the received values from a radio:

(∼Radio_recv ∼> v)* || (∼v ∼> Leds_set)*
The first trail (on the left of the || parallel operator)

awaits (∼) the external input event Radio recv, then triggers
(∼>) the internal event v, and then loops (*), repeating the
process. The second trail awaits the internal event v, then
triggers the external output event Leds set, and then loops
back. In other words, whenever a radio message is received,
the first trail resumes and awakes the second trail passing the
received value through the internal event v.

The example could be simplified and rewritten just as
(∼Radio recv ∼> Leds set)*, but would not illustrate the con-
current nature of CÉU, though.

The core BNF-like syntax of CÉUis the following:1

Note the syntax for attributions, triggers, and calls, where
the source expressions come first (resembling a dataflow
style). Operators are defined conforming to a standard in-
terface in a host language (e.g. functions in C).

A parallel expression executes its subexpressions in con-
current trails, terminating when one of them (par/or), or both
(par/and) terminate. All bookkeeping of trails (e.g. space al-
location and scheduling) is done by the language, promoting
a fine-grained use of trails. For instance, when any expres-
sion in a par/or terminates, CÉU automatically destroys all
other sibling trails.

CÉU is grounded on a precise definition of time as a dis-
crete sequence of external input events: a sequence because
only a single input event is handled at a time; discrete be-
cause a complete reaction always executes in bounded time
(discussed in Section 4). The execution model for a CÉU
program is as follows:

1. The program initiates in a single trail.

2. Active trails execute until they await or terminate. This
step is named as a reaction chain, and always runs in
bounded time.

3. If the program does not terminate, then it goes idle and
the environment takes the control.

4. On the occurrence of a new input event, the environ-
ment awakes the program on its awaiting trails. Then,
goes to step 2.

If a new input event happens while a reaction chain (step
2) is running, the environment enqueues it, as reaction chains
must run to completion. When multiple trails are active at a
time, CÉU does not specify the order in which they should
execute. The language runtime is allowed to serialize, inter-
leave, or even parallelize their execution.

Every variable in CÉU is also an internal event and vice-
versa. By triggering an internal event with a value also as-
signs that value to it. For this reason, internal events are also
known as reactive variables. The following program frag-
ment specifies that whenever the variable v1 changes, v2 is
automatically updated to the increment of v1, which in turn,
automatically updates v3 to the increment of v2:

(∼v1->inc ∼> v2)* || (∼v2->inc ∼> v3)*
In contrast with external events, which are handled in a

queue, internal events follow a stack policy and react within
the same propagation chain. In practical terms, this means
that a trail that triggers an internal event halts until all trails
awaiting that event completely react to it, continuing to exe-
cute afterwards, but within the same time unit.

1We omitted the part of the language that borrows from C type
declarations, pointers, arrays, and constants from.

4 Safety
A reaction chain must run in bounded time to ensure that

a program is responsive and can handle upcoming events. In
CÉU, only operators and loops might cause a reaction chain
to run in unbounded time.

As operators are typically simple functions that provide
ordinary operations, CÉU assumes that their implementation
in the host language do not enter in loop.

For CÉU loops, we restrict that they must contain at
least one await or break expression on theirs bodies for each
possible path within them. For instance, based on this re-
striction, the following loops are refused at compile time:
(1)*, (∼A||v)*, (v?1:∼A)*; while the following are accepted:
(∼A)*, (∼A&&v)*, (∼A?1:0)*. By structural induction, it is triv-
ial to infer whether a given loop body expression holds this
restriction or not.

Determinism is usually a desired safety property, mak-
ing programs more predictable and easier to debug. In CÉU,
there are three possible sources of non-determinism: con-
current access to variables (e.g. (1=>a&&2=>a)), concurrent
par/or termination (e.g. (1||2)=>a, might yield 1 or 2), and
concurrent loop escape2 (e.g. (1∧ && 2∧)* =>a).

During compile time, CÉU converts programs into deter-
ministic finite automatons in order to detect the three forms
of non-determinism. This conversion is the reason why CÉU
is a static language. A DFA unequivocally represents a CÉU
program, covering exactly all possible paths it can reach dur-
ing runtime. For instance, the following program is identi-
fied as non-deterministic, because the variable v is accessed
concurrently on the 6th occurrence of the event A:

(∼A; ∼A; 1=>v)* && (∼A; ∼A; ∼A; v)*

5 Physical Time
Physical time3 is probably the most common input in

WSN applications, as found in typical patterns, such as sen-
sor sampling, and watchdogs. However, system languages
support for physical time is somewhat low-level, usually
through timer callbacks or sleep blocking calls. CÉU pro-
vides a first-class support for physical time: the expression
∼1s500ms awaits one second and a half.

CÉU takes into account the fact that time is a physical
quantity that can be added and compared. For instance,
in the expression (∼50ms;∼49ms || ∼100ms), if CÉU cannot
guarantee that the left par/or subexpression terminates ex-
actly in 99ms, it can at least ensure that it will terminate
before the second subexpression does. Likewise, in the ex-
pression (∼10ms)*, after 1 second elapses, the loop iterated
exactly 100 times, even if a given reaction chain during that
period takes longer than 20ms.

Finally, the temporal analysis of CÉU (shown in pre-
vious section) also embraces the semantics for time. The
expression (∼50ms;∼49ms;1=>a || ∼100ms;2=>a) is determin-
istic, while ((∼10ms;1=>a)* || ∼100ms;2=>a) is not.

2The token ∧ escapes the innermost loop with its preceding ex-
pression.

3By physical time we mean the passage of time from the real
world, measured in hours, minutes, milliseconds, etc.

6 Evaluation
From the aspects we want to evaluate in CÉU—memory

and battery consumption, responsiveness, safety, and expres-
siveness— we already have quantitative measures for mem-
ory usage and expressiveness (in terms of source code size).

We ported existing TinyOS/nesC4[6] applications to CÉU
to support our experiments. The following table shows the
measures for ROM, RAM, and LOCs (lines of code) for the
same applications written in nesC and CÉU. The third line
for each application shows the ratio CÉU/nesC for a given mea-
sure, for example: the AntiTheft written in CÉU uses 1.40
times more RAM than its nesC counterpart.

ROM RAM LOC

Blink
nesC 2052 bytes 51 bytes 17 lines
CÉU 4168 bytes 247 bytes 5 lines

CÉU/nesC 2.03 4.84 0.29

Sense
nesC 4370 bytes 84 bytes 24 lines
CÉU 6742 bytes 348 bytes 11 lines

CÉU/nesC 1.54 4.14 0.46

AntiTheft
nesC 22424 bytes 1663 bytes 85 lines
CÉU 27014 bytes 2325 bytes 45 lines

CÉU/nesC 1.20 1.40 0.53

BaseStation
nesC 15216 bytes 1735 bytes 144 lines
CÉU 19844 bytes 2373 bytes 57 lines

CÉU/nesC 1.30 1.37 0.40

Our experiments suggest that as the applications com-
plexity grows, the difference in memory consumption de-
creases, reaching around 30-35% for the BaseStation appli-
cation. This behavior is a consequence of the memory foot-
print of CÉU, which requires specialized code for the runtime
bookkeeping of timers, trails, events, etc.

When evaluating LOCs of programs, we considered only
their core implementation file (modules in nesC), and ex-
tracted from it all comments, interface declarations, and ex-
tra spaces.5 With this approach we focused on the logic of
programs, where programmers spend most of their time and
rely on the expressiveness of the language in use. The CÉU
numbers are quite satisfactory, being around 50% smaller for
all applications.

7 Related Work
Our work is influenced by the Esterel language [1],

an imperative reactive language with similar constructs.
Karpinski and Cahill [7] present a language targeting WSNs
(also based on Esterel), and perform a throughout quantita-
tive and qualitative comparison with nesC. CÉU differs from
these languages with its semantics for internal events, physi-
cal time, and a more consistent support for concurrent access
to variables.

Protothreads [4] offer very lightweight threads with
blocking support. Its stackless implementation reduces

4We chose to use TinyOS due to its simplicity and acceptance
in the WSN community. We are using TinyOS− 2.1.1 and micaz
motes in our experiments.

5The original and modified sources for the experiments can be
found at www.lua.inf.puc-rio.br/˜francisco/sensys_11.html.

memory consumption but prevents automatic variables. Pro-
tothreads provide no safety support besides atomic execution
of threads: a program can loop indefinitely, and access to
globals is unrestricted.
8 Conclusion

We believe that CÉU poses concrete advantages in terms
of safety and expressiveness when compared to current sys-
tem languages for WSNs. Regarding safety, we propose a
temporal analysis of programs that prevents unresponsive-
ness and enforces deterministic behavior. In terms of ex-
pressiveness, our initial experiments show a 50% decrease in
LOCs when comparing CÉU to nesC.

In the design of CÉU we favored safety over power, since
we restricted the language to static capabilities only. How-
ever, this limitation can be considered (to some extent) ad-
vantageous for WSNs, given that CÉU enforces the prevail-
ing discipline in this context.

At this point, we did not evaluate battery consumption
and responsiveness aspects, but we plan to perform quan-
titative analysis for them. Responsiveness, in particular,
deals with long running tasks that currently require explicit
yields inside loops (e.g. with ∼1ms). We are working on a
lightweight asynchronous extension to CÉU to address this
limitation.

We intend to port more complex applications to CÉU to
improve our evaluation. We are aware of the limitations of
evaluating the expressiveness of CÉU based solely on LOCs,
though. On the way to a more in-depth qualitative approach,
we are teaching CÉU as an alternative to nesC in introductory
courses on WSNs for undergraduate and also high school
students. We will compare the achievements of the students
with both models and use the results in our evaluation.
9 References
[1] G. Berry and G. Gonthier. The ESTEREL synchronous pro-

gramming language: design, semantics, implementation. Sci-
ence of Computer Programming, 19(2):87–152, 1992.

[2] S. Bhatti, J. Carlson, H. Dai, J. Deng, J. Rose, A. Sheth,
B. Shucker, C. Gruenwald, A. Torgerson, and R. Han. MAN-
TIS OS: an embedded multithreaded operating system for wire-
less micro sensor platforms. Mob. Netw. Appl., 10:563–579,
August 2005.

[3] C. Duffy, U. Roedig, J. Herbert, and C. J. Sreenan. A com-
prehensive experimental comparison of event driven and multi-
threaded sensor node operating systems. JNW, 3(3):57–70,
2008.

[4] A. Dunkels, O. Schmidt, T. Voigt, and M. Ali. Protothreads:
simplifying event-driven programming of memory-constrained
embedded systems. In Proceedings of the 4th international
conference on Embedded Networked Sensor Systems, SenSys
’06, pages 29–42, New York, NY, USA, 2006. ACM.

[5] C. Elliott and P. Hudak. Functional reactive animation. In
ICFP ’97: Proceedings of the 2nd ACM SIGPLAN Interna-
tional Conference on Functional Programming, pages 263–
273, New York, NY, 1997. ACM.

[6] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K. Pis-
ter. System architecture directions for networked sensors. SIG-
PLAN Notices, 35:93–104, November 2000.

[7] M. Karpinski and V. Cahill. High-level application develop-
ment is realistic for wireless sensor networks. In SECON’07,
pages 610–619, 2007.

www.lua.inf.puc-rio.br/~francisco/sensys_11.html

	Biography
	Introduction
	The Language Céu
	Safety
	Physical Time
	Evaluation
	Related Work
	Conclusion
	References

