
A

The Design and Implementation of the Synchronous Language CÉU

Francisco Sant’Anna, Departamento de Informática e Ciência da Computação, UERJ
Roberto Ierusalimschy, Departamento de Informática, PUC–Rio
Noemi Rodriguez, Departamento de Informática, PUC–Rio
Silvana Rossetto, Departamento de Ciência da Computação, UFRJ
Adriano Branco, Departamento de Informática, PUC–Rio

CÉU is a synchronous language targeting soft real-time systems. It is inspired by Esterel and has a simple
semantics with fine-grained control over program execution. CÉU uses an event-triggered notion of time
that enables compile-time checks to detect conflicting concurrent statements, resulting in deterministic and
concurrency-safe programs. We present the particularities of our design in comparison to Esterel, such as
stack-based internal events, concurrency checks, safe integration with C, and first-class timers. We also
present two implementation back ends: one aiming for resource efficiency and interoperability with C, and
another as a virtual machine that allows remote reprogramming.

Additional Key Words and Phrases: Concurrency, Determinism, Embedded Systems, Esterel, Synchronous,
Reactivity

1. INTRODUCTION
An established alternative to C in the field of embedded systems is the family of
reactive synchronous languages [Benveniste et al. 2003]. Two major styles of syn-
chronous languages have evolved: in the control–imperative style, programs are struc-
tured with control flow primitives, such as parallelism, repetition, and preemption; in
the dataflow–declarative style, programs can be seen as graphs of values, in which a
change to a value is propagated through its dependencies without explicit program-
ming. Of the control-based languages, Esterel [Boussinot and De Simone 1991] was
the first to appear and succeed, influencing a number of embedded languages, such as
Reactive-C [Boussinot 1991], OSM [Kasten and Römer 2005], Sync-C [von Hanxleden
2009], and PRET-C [Andalam et al. 2010].

Despite its success and influence, Esterel has a complex semantics that requires
careful static analysis to detect and reject programs with causality and schizophrenia
problems [Berry 1999; Shiple et al. 1996; Sentovich 1997; Boussinot 1998; Schnei-
der and Wenz 2001; Tardieu and De Simone 2004; Edwards 2005; Yun et al. 2013]. A
complex semantics not only challenges the analysis and compilation of programs, but
also affects the programmer’s understanding about the code, who, ultimately, has to
solve the errors arising from corner cases. Furthermore, Esterel’s semantics is non-
deterministic for intra-reaction statements, which prevents threads from interact-
ing with stateful system calls safely and makes shared-memory concurrency not as
straightforward as reading and writing to shared variables.

In this work, we present CÉU, a new programming language that inherits the syn-
chronous and imperative mindset of Esterel but diverges in some fundamental se-
mantic aspects. CÉU proposes a semantics for soft real-time systems with fine-grained
control for intra-reaction execution which is amenable to concurrency checks that im-
prove safety. The list that follows summarizes the contributions behind the design of
CÉU:

— Unique and queue-based external events, which define the notion of time in CÉU.
— Stack-based internal events for intra-reaction communication, which also provides a

limited form of coroutines.
— Static concurrency checks to detect suspicious concurrent statements.
— Safe integration with C that enforces finalization for external resources.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:2

— First-class timers with dedicated syntax and automatic synchronization.

We also present a lightweight single-threaded implementation of CÉU with two back
ends: one aiming for resource efficiency and interoperability with C, and another as
a virtual machine that allows remote reprogramming. Our implementations target
resource-constrained devices, such as Arduino and MICAz sensor nodes based on 8-bit
microcontrollers,1 showing a practical aspect of the proposed semantics.

In previous work [Sant’Anna et al. 2013; Branco et al. 2015], we employed CÉU in
the context of wireless sensor networks, developing a number of applications, protocols,
and device drivers. We evaluated the expressiveness of CÉU in comparison to event-
driven code in C and attested a reduction in source code size (around 25%) with a small
increase in memory usage (around 5–10% for text and data) [Sant’Anna et al. 2013].
For the VM back end, applications have a bytecode footprint in the order of hundreds
of bytes and can be transmitted over the air in a few packets [Branco et al. 2015].

The semantics of CÉU implies an implementation with a runtime stack and a se-
quential scheduler. Unlike Esterel’s semantics, this precludes programs being com-
piled directly and efficiently to hardware [Berry 1999]. It also makes difficult to stati-
cally determine worst-case reaction times for hard real-time systems [Li et al. 2005].

The rest of the paper is organized as follows: Section 2 discusses the design of CÉU,
focusing on the fundamental differences to Esterel. Section 3 presents the C and VM
implementation back ends. Section 4 discusses other synchronous languages targeting
embedded systems. Section 5 concludes the paper.

2. THE DESIGN OF CÉU
CÉU is a synchronous reactive language inspired by Esterel in which programs ad-
vance in a sequence of discrete reactions to external events. Like Esterel, CÉU is
designed for control-intensive applications, supporting concurrent lines of execution,
known as trails, and broadcast communication through events. Internal computations
within a reaction (e.g., expressions, assignments, and system calls) are considered to
take no time in accordance with the synchronous hypothesis [de Simone et al. 2005].
An await is the only statement that halts a running reaction and allows a program to
advance in this discrete notion of time. To ensure that reactions run in bounded time
and programs always progress, loops are statically required to contain at least one
await statement in each possible path [Sant’Anna et al. 2013; Berry 2000]. CÉU shares
the same limitations with (core) Esterel and synchronous languages in general [Berry
1993]: computations that run in unbounded time (e.g., cryptography, image processing)
do not fit the zero-delay hypothesis, and cannot be directly implemented.

Figure 1 illustrates the syntactic similarities between the languages, showing side-
by-side the implementations in Esterel [a] and CÉU [b] of the following control spec-
ification: “Emit an output O as soon as inputs A and B occur. Reset this behavior each
time input R occurs” [Berry 2000]. The first phrase of the specification, awaiting and
emitting the events, is translated almost identically in the two languages (ln. 5–10,
in both implementations), as Esterel’s ‘‖’ and CÉU’s par/and constructs are analogous.
For the second phrase, the reset behavior, the Esterel version uses an abort-when state-
ment (ln. 4–11) which, in this case, serves the same purpose as CÉU’s par/or (ln. 4–13):
the occurrence of event R aborts the awaiting statements in parallel and restarts the
enclosing loop.

Figure 2 shows the subset of the concrete syntax of CÉU used in this paper as a quick
reference. In a separate document, we present the formal semantics with a simplified
abstract syntax [Sant’Anna 2013].

1Both Arduino and MICAz use the 8-bit ATmega328 microcontroller with 32K of FLASH and 2K of SRAM.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:3

1 input A, B;
2 output O;
3 loop
4 abort
5 [
6 await A
7 ‖
8 await B
9];

10 emit O
11 when R
12 end
13
14 .

[a] Esterel

1 input void A, B;
2 output void O;
3 loop do
4 par/or do
5 par/and do
6 await A;
7 with
8 await B;
9 end

10 emit O;
11 with
12 await R;
13 end
14 end

[b] CÉU

Fig. 1. A control specification implemented in Esterel and CÉU: “Emit O after A and B, resetting each R.” A
par/and terminates when both trails in parallel terminate. A par/or terminates when any trail terminates,
aborting the other.

// DECLARATIONS

input <type> <ids>; // external input events
output <type> <ids>; // external output events
event <type> <ids>; // internal events
var <type> <id> = <exp>; // a variable with an initial value

// EVENT HANDLING

<id> = await <id>; // await an event and assign the received value
<id> = await <time>; // await time and assign the delayed delta
emit <id> => <exp>; // emit an event passing a value

// CONTROL FLOW

<stmt> ; <stmt> // sequence
if <exp> then <stmts> else <stmts> end // conditional
loop do <stmts> end // repetition
do <stmts> end // explicit block

par/or do <stmts> with <stmts> end // aborts when one side terminates
par/and do <stmts> with <stmts> end // terminates when both sides terminate
par do <stmts> with <stmts> end // never terminates

finalize <stmts> with <stmts> end // block finalization

// INTEGRATION WITH C

< id>(<exps>) // C call (identifier starts with ‘ ’)
native do <stmts> end // declarations in C
native @const < ids> // annotations: constant symbols
native @pure < ids> // pure functions
native @safe < ids> with < ids> // non−conflicting symbols

Fig. 2. Subset of the concrete syntax of CÉU used in this paper.
Some features are not covered in this paper, e.g.,: pausing, asynchronous execution, and abstractions (func-
tions and data structures).

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:4

In the subsections that follow, we discuss the main differences between CÉU and
Esterel: Unique and queue-based external events (2.1); Stack-based internal events
(2.2); Static concurrency checks (2.3); Safe integration with C (2.4); and First-class
synchronized timers (2.5). We finish the section with a summary of our design (2.6).

2.1. Unique and Queue-Based External Events
Esterel defines time as a discrete sequence of logical unit instants or “ticks”. At each
tick, the program reacts to an arbitrary number of simultaneous input events from
the environment. In contrast, CÉU defines time as a discrete sequence of reactions to
unique input events. At each input event, which constitutes a logical unit of time, the
program reacts exclusively to it. The event-triggered execution of a program in CÉU is
as follows [Sant’Anna et al. 2013]:

(1) The program initiates the “boot reaction” in a single trail (but parallel constructs
may create new trails).

(2) Active trails execute until they await or terminate, one after another. This step is
named a reaction chain, and always runs in bounded time.

(3) The program goes idle and the environment takes control.
(4) On the occurrence of a new external input event, the environment awakes all trails

awaiting that event. It then goes to step 2.

A program must react to an event completely before handling the next one. Based on
the synchronous hypothesis, a program takes negligible time on step 2 and is always
idle on step 3. In practice, if a new external input event occurs while a reaction chain
is running, it is enqueued to occur in a subsequent reaction.

Figure 3 compares the discrete notions of time in two variations of Esterel and in
CÉU. The box Real World assumes an external observer with an absolute reference
clock which timestamps event occurrences over a continuous timeline [Kopetz 2011,
Chapter 3] (e.g., event C occurs at 17ms521us). The other boxes show how the same
occurring events fit differently in each logical notion of time.

— [Box-1]: Esterel with fixed-length ticks [Li et al. 2005]. (Usually referred to as
sample-driven execution [Benveniste et al. 2003].) We assume a reaction R(boot)

at tick-0 which happens before any input. The input A “physically” occurs during
the boot reaction but, because time is discrete, its corresponding reaction only ex-
ecutes in the next tick. Note that R(A) takes more time than tick-1 and invades
tick-2, causing a timing violation [Li et al. 2005]. The events B and C occur during
tick-1 and are delayed to happen simultaneously at tick-2 with R(B+C). Since no
new events occur during tick-2, the CPU stays idle during the whole tick-3. Finally,
one instance of event D and two instances of event E occur during the idle tick-3.
However, only one occurrence of E can be considered in R(D+E).

— [Box-2]: Esterel with variable-length ticks [Roop et al. 2004]. This approach avoids
the timing violation for R(A) and also results in smaller idle periods because it ad-
justs the tick lengths to match the CPU times for the reactions. For instance, the
occurrence of D interrupts the idle tick-3 to react alone as R(D) at tick-4. Similarly
to the fixed-tick approach, only one of the two simultaneous occurrences of E is con-
sidered at tick-5, now because R(D) takes too long.

— [Box-3]: CÉU with unique and queue-based input events. We also assume a reaction
R(boot) before any input. Because the occurrence of event A is unique during R(boot),
the behavior in CÉU is similar to Box-2 for its first two reactions (tick-0 and tick-1).
However, CÉU does not consider the events B and C as simultaneous, and handles
each in subsequent reactions R(B) and R(C). We assume the CPU times for R(B+C)

in Esterel and R(B)+R(C) in CÉU to be roughly the same. This way, the first idle

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:5

Fig. 3. The discrete notions of time in Esterel and CÉU.

periods in Box-2 and Box-3 coincide. Finally, CÉU reacts to the two instances of E

independently, which are handled in sequence.

Sample-driven execution maps directly to hardware implementations and does not
require runtime queues. However, considering the soft real-time application domain
of CÉU, we decided for the unique and queue-based semantics in CÉU for the reasons
that follow:

— A “tick” is implementation dependent: Tick lengths are not part of the program
specification. For instance, if we log the Real World box timeline and reproduce it in
implementations with different tick lengths, the behaviors might differ.

— Events are never absolutely simultaneous: We consider that the notion of si-
multaneity should be defined explicitly for each use case (to be discussed in Sec-
tion 2.5). In tick-based approaches, simultaneity depends on the length of discrete
ticks. For instance, in box-1 and box-2 of Figure 3, events B and C are simultaneous,
even though A and B “physically” happen much closer to one another.

— Unique input events imply mutual exclusion: Reactions to exclusive events are
atomic and never overlap. Automatic mutual exclusion simplifies reasoning about
concurrency and is a prerequisite for the concurrency checks to be discussed in Sec-
tion 2.3.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:6

1 input A; // external
2 signal B; // internal
3 [[
4 await A;
5 emit B;
6 call f();
7 ‖
8 await B;
9 call g();

10]]

[a] Esterel

1 input void A; // external (in uppercase)
2 event void b; // internal (in lowercase)
3 par/and do
4 await A;
5 emit b;
6 f();
7 with
8 await b;
9 g();

10 end

[b] CÉU

Fig. 4. Internal signals (events) in Esterel and CÉU: similar syntax, but different semantics.

Note that Esterel supports declarations for mutually exclusive inputs that cannot
be simultaneous in the same reaction (e.g., “relation A#B#C#D#E;”) [Berry 2000]. Mak-
ing all inputs mutually exclusive and adopting the variable-length-tick approach is
equivalent to CÉU’s notion of time, which can be seen as an imposed restriction on the
semantics of Esterel.

The synchronous hypothesis for CÉU holds if the reactions run faster than the rate
of incoming input events. Otherwise, the application continuously accumulates delays
between the real occurrence and actual reaction of a given event (we discuss imple-
mentation considerations in Sections 3.5 and 3.6). This is also the case for the variable-
length-tick approach of Esterel, since the more inputs to handle, the longer the reaction
takes, and the more inputs accumulate for subsequent ticks. For the fixed-length-tick
approach of Esterel, a breach in the synchronous hypothesis causes timing violations,
requiring worst case reaction time analysis to infer appropriate tick lengths [Li et al.
2005]. For soft real-time systems, accumulating delays and occasionally postponing
reactions might be enough. However, hard real-time systems require a more robust
approach such as determining fixed-length ticks that can be statically verified.

A limitation of event-triggered execution is that all program behavior is purely reac-
tive, given that no code can execute in the absence of inputs. Tick-triggered execution
allows for active behavior, since code can execute regularly on every tick. Although
CÉU supports active asynchronous execution [Sant’Anna et al. 2012], its synchronous
core is still purely reactive.

2.2. Stack-Based Internal Events
In Esterel, the behavior of internal and external signals is equivalent. In CÉU, in con-
trast with queue-based external events, internal events follow a stack-based execution
policy similar to subroutine calls in typical programming languages. Figure 4 illus-
trates the use of internal signals (events) in Esterel [a] and CÉU [b]. In Esterel, when
A occurs, the program emits B (ln. 4–5) and both events become active, resulting in the
invocation of f() and g() in no particular order (ln. 6,9). In CÉU, when A occurs, the
program behaves as follows:
(1) 1st trail awakes, broadcasts b, and pauses (ln. 4–5).
(2) 2nd trail awakes, calls g(), and terminates (ln. 8–9). (No other trails awake to b.)
(3) 1st trail (on top of the stack) resumes, calls f(), and terminates (ln. 5–6).
(4) Both trails have terminated, so the par/and rejoins, and the program also terminates.

Internal events provide fine-grained execution control and can express a limited
form of subroutines, as described in Figure 5. The “subroutine” inc is defined as a loop
(ln. 3–6) that continuously awaits its identifying event (ln. 4), incrementing the value
passed by reference (ln. 5). A trail in parallel (ln. 8–11) invokes the subroutine through
an emit inc (ln. 10) in reaction to some code (ln. 9). Given the stacked execution for
internal events, the calling trail pauses, the subroutine awakes (ln. 4), runs its body

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:7

1 event int∗ inc; // subroutine ‘inc’
2 par/or do
3 loop do // definitions are loops
4 var int∗ p = await inc;
5 ∗p = ∗p + 1;
6 end
7 with
8 var int v = 1;
9 <...>

10 emit inc => &v; // call ‘inc’
11 assert(v==2); // after return
12 end

Fig. 5. Subroutine inc is defined in a loop (ln. 3–6), in parallel with the caller (ln. 8–11).

1 event void e,f;
2 loop do
3 par/or do
4 await e;
5 with
6 emit e; // w/o delayed awaits, the emit awakes 1st trail
7 await f; // and restarts the loop instantaneously
8 end
9 end

Fig. 6. Delayed awaits prevents re-execution of statements by design.

(yielding v=2), loops, and awaits the next “call” (ln. 4, again). Only after this sequence
does the calling trail resumes and passes the assertion test (ln. 10–11).

CÉU also supports nested emit invocations for internal events. For instance, the body
of the subroutine inc in Figure 5 could emit another event after awaking (ln. 4), creating
a new level in the stack. The runtime stack constitutes fine-grained micro reactions,
with one on top of the other, all inside the same reaction to an external event.

On the one hand, this form of subroutine has a significant limitation that it cannot
express recursive calls: an emit to itself is always ignored, given that a running body
cannot be awaiting itself. On the other hand, this very same limitation brings some im-
portant safety properties to subroutines: first, they are guaranteed to react in bounded
time; second, memory for locals is also bounded, not requiring data stacks. Also, this
form of subroutine can use the other primitives of CÉU, such as parallel compositions
and the await statement. In particular, they await keeping context information such
as locals and the program counter, similarly to coroutines [de Moura and Ierusalim-
schy 2009]. In previous work, we build other advanced control mechanisms on top of
internal events, such as resumable exceptions and reactive variables [Sant’Anna et al.
2013].

Another distinction regarding event handling in comparison to CÉU is that Esterel
supports same-cycle bi-directional communication [Edwards 1999], i.e., two threads
can react to one another during the same cycle due to mutual signal dependencies
(a.k.a. instantaneous dialogue [Halbwachs 1994]). CÉU takes a different approach, pos-
ing a restriction that an await is only valid for the next reaction, i.e., if an await and
emit occur simultaneously in parallel trails, the await does not awake. These delayed
awaits avoid corner cases of instantaneous termination and re-execution of statements
in the same reaction (known as schizophrenic statements [Berry 1999]). Also, unlike
Esterel, this approach does not require data dependency analysis (e.g., “(set or reset of
a signal must always precede any test of this signal (signal coherence law and construc-
tivity)” [Closse et al. 2002]).

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:8

1 input void A, B;
2 var int x = 1;
3 par/and do
4 await A;
5 x = x + 1;
6 with
7 await B;
8 x = x ∗ 2;
9 end

[a] Accesses to x are safe

1 input void A;
2 var int y = 1;
3 par/and do
4 await A;
5 y = y + 1;
6 with
7 await A;
8 y = y ∗ 2;
9 end

[b] Accesses to y are unsafe

Fig. 7. Shared-memory concurrency in CÉU: example [a] is safe because the trails access x atomically in
different reactions; example [b] is unsafe because both trails access y in the same reaction.

The example in Figure 6 illustrates delayed awaits, which prevents infinite exe-
cution in the loop. Both sides of the par/or have an await statement (ln. 4,7), which
characterizes the enclosing loop as non instantaneous (ln 2–9). However, if the emit e

(ln. 6) could awake the await e instantaneously (ln. 4), the par/or would terminate and
restart the loop also instantaneously, resulting in infinite execution. In atypical sce-
narios requiring immediate awake, delayed awaits can be circumvented by placing the
code to execute before the await. On the one hand, we transfer the burden of deal-
ing with these corner cases to the programmer. On the other hand, we simplify the
semantics of the language and eliminate the need for complex analysis to deal with
schizophrenic statements.

2.3. Static Concurrency Checks
Embedded applications make extensive use of global memory and shared resources,
such as through memory-mapped registers and system calls to device drivers. Hence,
an important goal of CÉU is to ensure a reliable behavior for programs with concurrent
lines of execution sharing memory and interacting with the environment.

Esterel is only deterministic with respect to external behavior: “the same sequence of
inputs always produces the same sequence of outputs” [Berry 2000]. However, the exe-
cution order for operations within a reaction is non-deterministic: “if there is no control
dependency, as in (call f1() || call f2()), the order is unspecified and it would be an
error to rely on it” [Berry 2000]. For this reason, Esterel, does not support shared-
memory concurrency: “if a variable is written by some thread, then it can neither be
read nor be written by concurrent threads” [Berry 2000]. A number of Esterel-inspired
synchronous languages enforce an arbitrary execution order for statements in mul-
tiple lines of execution to achieve intra-reaction determinism (Reactive C [Boussinot
1991], Protothreads [Dunkels et al. 2006], SOL [Karpinski and Cahill 2007], SC [von
Hanxleden 2009], and PRET-C [Andalam et al. 2010]). CÉU also takes the determin-
istic approach and, when multiple trails are active during the same reaction, they are
scheduled in lexical order, i.e., in the order they appear in the program source code.

Even so, we consider that enforcing an arbitrary execution order can be misleading
in some cases. For instance, consider the two examples in Figure 7, both defining a
shared variable (ln. 2), and assigning to it in parallel trails (ln. 5, 8). In the example [a],
the two assignments to x can only execute in reactions to different events A and B, which
cannot occur simultaneously by definition (Section 2.1). Hence, for the sequence A->B,
x becomes 4 ((1+1)*2), while for B->A, x becomes 3 ((1*2)+1). In the example [b], the two
assignments to y are simultaneous because they execute in reaction to the same event
A. Since CÉU employs lexical order for intra-reaction statements, the execution is still
deterministic, and y always becomes 4 ((1+1)*2). However, an (apparently innocuous)
change in the order of trails modifies the semantics of the program, which we consider
unsafe.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:9

1 native do
2 #define NUM 10
3 void f (void) { <...> }
4 void g (int v) { <...> }
5 int id (int v) { <...> }
6 end
7 par/and do
8 f();
9 with

10 g(id(NUM));
11 end

[a] Definitions and uses of symbols

native @const NUM;
native @pure id();
native @safe f() with g();

.

[b] Annotations for the symbols in [a]

Fig. 8. The unsafe program in [a] only compiles with the annotations in [b].

To mitigate this threat, CÉU performs concurrency checks at compile time to detect
conflicting accesses to shared variables: if a variable is written in a trail segment, then
a concurrent trail segment cannot read or write to that variable, nor dereference a
pointer of that variable type. Concurrency in CÉU is characterized when two or more
trail segments in parallel react to the same input event. A trail segment is a sequence
of statements followed by an await (or termination). Considering the examples in Fig-
ure 7:

— The assignments to x ([a]:2,5) cannot be concurrent because they are not in parallel
trails.

— The assignments to x ([a]:5,8) cannot be concurrent because they cannot execute
during the same reaction.

— The assignments to y ([b]:5,8) can be concurrent because they are in parallel trails
and can execute during the same reaction.

The detection algorithm, which is described in Section 3.1, inspects all possible await

statements that precede a variable access and keeps a list with all corresponding awak-
ing events. Then, it checks all accesses in parallel trails to see if they share an awaking
event. If it is the case, the compiler warns about the suspicious accesses.

The uniqueness of input events within reactions makes this analysis possible, oth-
erwise, any two trail segments in parallel could be concurrent, even if they react to
different input events. Note that the static checks are optional and do not affect the
semantics of the program.

2.4. Safe Integration with C
In CÉU, any identifier prefixed with an underscore is passed unchanged to the C com-
piler that generates the final binary. Therefore, access to C is straightforward and
syntactically trackable. Similarly to Esterel with the call primitive, external calls are
assumed to be instantaneous [Berry 2000]. This way, programs should only resort to
C for asynchronous functionality, such as non-blocking I/O, or simple struct accessors,
but never for control purposes.2

2.4.1. Concurrency Checks. As a safety measure, the concurrency checks of Section 2.3
also consider concurrent calls and accesses to external symbols in C. As an example,
the program in Figure 8.a defines four external symbols inside a native block with
standard declarations in C (ln. 1–6). During the boot reaction, two trails react con-
currently inside the par/and (ln. 7–11): the first trail calls symbol f (ln. 8), while the
second calls g and id, and also reads NUM (ln. 10). Since CÉU does not inspect any code

2In CÉU, it is possible to restrict the available C symbols as a compile-time option.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:10

par do
<...> // animate and redraw "background"

redraw(background);
with

<...> // animate and redraw "foreground"
redraw(foreground);

end

.

[a] redraw cannot be concurrent

1 native do
2 #define redraw non commutative redraw
3 end
4 native @safe redraw non commutative with
5 redraw non commutative;
6 par do
7 <...> // animate and redraw "background"
8 redraw non commutative(background);
9 with

10 <...> // animate and redraw "fore"
11 redraw non commutative(foreground);
12 end

[b] redraw non commutative can be concurrent
Fig. 9. Making the non-commutative redrawing calls from [a] to compile in [b].

in C, it complains about suspicious concurrent accesses between f and all symbols in
the second trail.

2.4.2. Annotations. The annotations in Figure 8.b provide hints to the compiler about
the semantics of the C symbols in program [a], which now compiles successfully:

— NUM is a constant symbol, meaning that it is safe to use it concurrently with any
other symbol in the program.

— id is a pure function, also meaning that it is safe to call it concurrently with any
other symbol in the program.

— Both f and g are impure, but have non-conflicting commutative effects, and can be
safely called concurrently.

From our experience, however, we find that programs often need non-commutative
concurrent calls. This is the case for logging (e.g., calls to printf in trails in parallel)
and for redrawing objects on the screen. Figure 9.a shows an abstract code to animate
and redraw the objects background and foreground in trails in parallel. In typical graphi-
cal APIs, consecutive calls to redraw overwrite conflicting pixels, which makes the calls
non-commutative and prevents the code from compiling. However, in this case we want
to rely on lexical order to always redraw the background object before the foreground

object. Therefore, in Figure 9.b, we redefine redraw as redraw non commutative (ln. 2),
communicating its effect explicitly, and annotate it as safe (ln. 4–5) to make the code
compile successfully.

2.4.3. Finalization. Esterel’s abort and CÉU’s par/or statements provide orthogonal
abortion of lines of execution, which is a distinctive feature of synchronous languages
in comparison to asynchronous languages [Berry 1993]. However, aborting lines of ex-
ecution that deal with external resources may lead to inconsistencies. For this reason,
Esterel and CÉU provide a finalize construct to unconditionally execute a series of
statements even if the enclosing block is aborted and does not terminate normally.

CÉU also enforces the use of finalize for system calls that deal with pointers repre-
senting resources, as illustrated in the two examples of Figure 10:

— If CÉU passes a pointer to a system call (ln. [a]:5), the pointer represents a local
resource (ln. [a]:2) that requires finalization (ln. [a]:7).

— If CÉU receives a pointer from a system call return (ln. [b]:4), the pointer repre-
sents an external resource (ln. [b]:2) that requires finalization (ln. [b]:6).

CÉU tracks the interaction of system calls with pointers and requires finalization
clauses to accompany them. In the example in Figure 10.a, the local variable msg (ln.
2) is an internal resource passed as a pointer to send request (ln. 5), which is an asyn-
chronous call that transmits the buffer in the background. If the block aborts (ln. 11)

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:11

1 par/or do
2 var buffer t msg;
3 <...> // prepare msg
4 finalize
5 send request(&msg);
6 with
7 send cancel(&msg);
8 end
9 await SEND ACK;

10 with
11 <...>
12 end
13 .

[a] Local resource finalization

1 par/or do
2 var FILE∗ f;
3 finalize
4 f = fopen(...);
5 with
6 fclose(f);
7 end
8 fwrite(..., f);
9 await A;

10 fwrite(..., f);
11 with
12 <...>
13 end

[b] External resource finalization
Fig. 10. CÉU enforces the use of finalization to prevent dangling pointers for local resources and memory
leaks for external resources.

before receiving an acknowledge from the environment (ln. 9), the local msg goes out
of scope and the external transmission now holds a dangling pointer. The finalization
ensures that the transmission also aborts (ln. 7). In the example in Figure 10.b, the
call to fopen (ln. 4) returns an external file resource as a pointer. If the block aborts (ln.
12) during the await A (ln. 9), the file remains open as a memory leak. The finalization
ensures that the file closes properly (ln. 6). In both cases, the code does not compile
without the finalize construct.3

2.5. First-Class Timers
Activities that involve reactions to wall-clock time4 appear in typical patterns of em-
bedded development [Bourke and Sowmya 2009], such as timeout watchdogs and sen-
sor samplings. However, the interaction between system clocks and programs is not
absolutely precise, a fact that is usually ignored in the development process. We de-
fine the difference between a requested timeout and the actual expiring time as the
residual delta time (delta). Without explicit manipulation, the recurrent use of timed
activities in a row (or in a loop) may accumulate a considerable amount of deltas that
can lead to incorrect behavior in programs.

The await statement of CÉU supports wall-clock time and handles deltas automat-
ically. In the example in Figure 11.a, suppose that after the first await request, the
underlying system gets busy5 and takes 15ms to notify CÉU. The scheduler will notice
that the await 10ms (ln. 2) has not only already expired, but is delayed with delta=5ms.
Then, the awaiting trail awakes, sets v=1 (ln. 3), and invokes await 1ms (ln. 4). As the
current delta is still higher than the requested timeout (i.e. 5ms > 1ms), the trail is
rescheduled for execution, now with delta=4ms.

Delta compensation also implies that timers can be added and compared when rea-
soning about time as a physical quantity. For instance, in the example in Figure 11.b,
although the scheduler cannot guarantee that the first trail terminates exactly in 11ms
(ln. 2,4), it can at least ensure that the program always terminates with v=1. Given that
any non-awaiting sequence is considered to take no time in the synchronous model,
the first trail (ln. 2–5) is guaranteed to awake first and terminate the par/or before
the second trail executes (ln. 7–8), because 10 + 1 < 12. A similar program in a lan-
guage without first-class support for timers would depend on the execution timings for

3The compiler only forces the programmer to write the finalization clause, but cannot check if it actually
handles the resource properly.
4By wall-clock time we mean the passage of time from the real world, measured in hours, minutes, etc.
5Due to platform overheads (e.g., OS scheduling) and occasional slow reactions, await 10ms means sus-
pending a line of execution for at least 10 milliseconds.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:12

1 var int v;
2 await 10ms;
3 v = 1;
4 await 1ms;
5 v = 2;
6
7
8
9 .

[a]

1 par/or do
2 await 10ms;
3 <...> // any non−awaiting sequence
4 await 1ms;
5 v = 1;
6 with
7 await 12ms;
8 v = 2;
9 end

[b]

Fig. 11. First-class timers in CÉU.

var int v;
var int late = await 10ms;
v = 1;
await (late+1000)us;
v = 2;

.

[a]

loop do
var int late = await 1us;
if late > 1000 then // I am late 1000x 1us?

<...> // abnormal behavior
else

<...> // normal behavior
end

end

[b]

Fig. 12. The await statement for timers returns the current delta in microseconds.

the code marked as <...>, making the reasoning about the execution behavior more
difficult.

The await statement for timers returns the current delta, as illustrated in Figure 12.
Figure 12.a is a variation of Figure 11.a in which the second await adds the current
delta to annul it and guarantee that v remains set to 1 during 1 millisecond. Figure 12.b
deals with the possible case in which a small 1us timer in a loop never “catches up”
with the external clock, resulting in a delta that increases indefinitely.

In Section 2.1, we argue that event occurrences are infinitesimal and can
never be absolutely simultaneous. First-class timers simplify the implementation of
application-defined simultaneity. Figure 13 emulates a middle click event (ln. 3) in
terms of “simultaneous” occurrences of LEFT CLICK and RIGHT CLICK (ln. 1–2). After both
events occur in any order, we emit the internal event middle click (ln. 6–7). However,
if one of them occurs and the 200ms timer expires (ln. 9–10), we abort the whole be-
havior with the par/or (ln. 5) and try again with the enclosing loop (ln. 4). In this
specification, “simultaneous” means “within 200 milliseconds”, which might be a huge
amount of time for a language-defined tick. For instance, an implementation of this
specification in Esterel would be similar, since it would not rely on the tick notion of
simultaneity either.

2.6. Summary
CÉU aims to offer a simple semantics with internal determinism and fine-grained con-
trol over execution. The following list summarizes the contributions of our design in
this direction:

— Event-triggered notion of time bound to the semantics of the language. Event-driven
programming is popular in many domains, such as server and GUI development. We
believe that programmers are more familiar with dealing with events in isolation,
simplifying the reasoning about concurrency. In addition, the uniqueness of external
events is a prerequisite for the concurrency checks of CÉU.

— Deterministic intra-reaction execution and communication. Determinism in CÉU
does not depend on additional levels of static analysis. It encompasses the whole

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:13

1 input void LEFT CLICK;
2 input void RIGHT CLICK;
3 event void middle click;
4 loop do
5 par/or do
6 AWAIT AND(LEFT CLICK, RIGHT CLICK);
7 emit middle click;
8 with
9 AWAIT OR(LEFT CLICK, RIGHT CLICK);

10 await 200 ms;
11 end
12 end

13 #define AWAIT AND(e1, e2) \
14 par/and do \
15 await e1; \
16 with \
17 await e2; \
18 end
19 #define AWAIT OR(e1, e2) \
20 par/or do \
21 await e1; \
22 with \
23 await e2; \
24 end

Fig. 13. Application defines that a middle click event occurs whenever both LEFT CLICK and
RIGHT CLICK occur within 200 milliseconds. The macros AWAIT AND (ln. 13–18) and AWAIT OR (ln. 19–24)
are simple expansions to a par/and and par/or for better readability.

language, including memory accesses, system calls, and stack-based internal events.
Programmers can figure out which statement executes next following clear sequen-
tial rules.

— Static concurrency checks. Although execution is deterministic, the CÉU compiler
still advises about suspicious statements that can react concurrently to the same
event.

— Safe integration with C. When dealing with concurrent system calls, programmers
can provide annotations to reduce false positives in the static checks, or to force non-
commutative concurrent behavior. CÉU also requires finalization clauses to handle
pointers representing resources.

— First-class timers with dedicated syntax and automatic synchronization. Given the
need for timers in embedded systems, a dedicated syntax can simplify the develop-
ment and readability of programs. Furthermore, automatic synchronization releases
the programmer from the burden of adjusting timers in sequence and in parallel.

Our approach for synchronous and deterministic execution also leads to some limi-
tations as follows:

— Execution is purely reactive as result of event-triggered reactions. Since only event
occurrences can start reactions, programs cannot execute proactively in the absence
of events. In addition, await statements cannot awake in the same reaction they are
reached.

— Reactions must execute in bounded time due to the synchronous hypothesis. As a
synchronous language, CÉU requires CPU times for reactions to be negligible in
comparison to the rate of incoming events.

— Execution is sequential because of intra-reaction determinism. The deterministic se-
mantics of CÉU does not make implicit parallelization easy (to be discussed in Sec-
tion 3.5).

Nonetheless, we advocate keeping a tractable synchronous reactive core with support
for shared memory concurrency and deterministic execution. To deal with the limita-
tions above, we recommend memory-isolated parallelizable asynchronous primitives
as separate extensions to the synchronous core [Berry et al. 1993] (which are not in
the scope of this paper).

3. IMPLEMENTATION
The compilation of CÉU programs consists of three main phases: the parsing phase
converts the source code in CÉU to an abstract syntax tree (AST); the concurrency
checks phase detects inconsistencies in programs, such as unbounded loops and suspi-

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:14

cious concurrent statements; the code generation phase converts the AST to standard
C code and augments it with platform-dependent functionality (e.g., system calls) and
the runtime of CÉU, compiling everything with gcc to generate the final binary. An al-
ternative implementation generates bytecode for an embedded virtual machine, which
can disseminate and install programs dynamically.

In the subsections that follow, we discuss implementation details specific to CÉU:
concurrency checks for determinism (Section 3.1), static memory allocation for data
and trails (Sections 3.2 and 3.3), static scheduling and trail finalization (Section 3.4),
single-threaded dispatching (Section 3.5), interaction with the environment (Sec-
tion 3.6), and the VM back end (Section 3.7),

3.1. Concurrency Checks
The compile-time concurrency checks detect inconsistencies in CÉU programs. Here,
we focus on the algorithm that detects suspicious concurrent statements, such as ac-
cesses to shared variables, as discussed in Section 2.3.

For each node representing a statement in the program AST, we keep the set of
input events I (incoming) that can start the execution of the node, and also the set of
input events O (outgoing) that can terminate the node. As an example, for the single-
statement program await A, we have I = {boot} and O = {A}.

A node inherits the set I from its immediate parent and calculates O according to its
type, as follows:

— Nodes that represent expressions, assignments, C calls, and declarations simply re-
produce O = I, as they do not await;

— An await E statement, where E is an external input event, has O = {E} (see also
internal events below).

— A sequence node (;) modifies each of its children to have In = On−1, except for n = 1
(which inherits I from the parent node). The set O for the whole node is copied from
its last child, i.e., O = On.

— An if node has O = Otrue ∪Ofalse, where true and false are the two if branches.
— A loop node includes the output of its body on its own I (I = I ∪Obody), as the loop is

also reached from its own body. The union of all I from nested break statements forms
the set O for a loop, i.e., entering a break means exiting a loop. A break statement
has O = {} as it never proceeds to the statement immediately following it.

— A parallel composition may terminate from any of its branches, hence O = O1 ∪ ... ∪
On.

— For internal events, an await awakes from any input that leads to any matching emit

in a trail in parallel:
— An await e has O = Ie1 ∪ ... ∪ IeN , where e1...eN are emit e statements in trails in

parallel.
— An emit e terminates in the same reaction, having O = I.

With all sets calculated, we take all pairs of nodes that perform side effects and are
in parallel branches, and compare their sets I for non-empty intersections. For each
pair, if the intersection is not empty, we mark both nodes as suspicious.

The code in Figure 14.a has its corresponding AST and sets I and O in Figure 14.b.
The assignments to y in parallel (ln. [a]:5,8) have an empty intersection of I (ln.
[b]:6,9), hence, they do not conflict. Note that, although the accesses to y in sequence
(ln. [a]:5,11) do have an intersection (ln. [b]:6,11), they are not in parallel branches
and are also safe.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:15

1 input void A, B;
2 var int y;
3 par/or do
4 await A;
5 y = 1;
6 with
7 await B;
8 y = 2;
9 end

10 await A;
11 y = 3;

[a] A program in CÉU...

1 Stmts I={boot} O={A}
2 Dcl y I={boot} O={boot}
3 ParOr I={boot} O={A,B}
4 Stmts I={boot} O={A}
5 Await A I={boot} O={A}
6 Set y I={A} O={A}
7 Stmts I={boot} O={B}
8 Await B I={boot} O={B}
9 Set y I={B} O={B}

10 Await A I={A,B} O={A}
11 Set y I={A} O={A}

[b] ...with corresponding sets I and O.

Fig. 14. A program with a corresponding AST describing the sets I and O. The program is safe because
accesses to y in parallel have no intersections for I.

1 input int A, B, C;
2 do
3 var int a = await A;
4 end
5 do
6 var int b = await B;
7 end
8 par/and do
9 await B;

10 with
11 await C;
12 end

[a] A program in CÉU...

1 union { // sequence
2 int a; // do 1
3 int b; // do 2
4 struct { // par/and
5 int and 1: 1;
6 int and 2: 1;
7 };
8 } MEM ;
9

10
11
12 .

[b] ...with corresponding memory layout

Fig. 15. A program with blocks in sequence and in parallel, with corresponding memory layout generated
by the compiler.

3.2. Static Memory Layout
CÉU promotes a fine-grained use of trails: it is common to use trails that await a single
event and terminate. For this reason, CÉU does not allocate per-trail stacks; instead,
all data resides in fixed memory slots—this is true for the program variables as well
as for temporary values and runtime flags. Memory for trails in parallel must coexist,
while statements in sequence can reuse it. Translating this idea to C is straightfor-
ward [Kasten and Römer 2005]: memory for blocks in sequence are packed into a union,
while blocks in parallel are packed into a struct. CÉU reserves a single static block of
memory to hold all memory slots, whose size is the maximum the program uses at
any given time. A position in the memory may hold different data (with variable sizes)
during runtime. As an example, Figure 15 shows a program with its corresponding
memory layout. The do-end blocks and par/and in sequence (ln. [a]:2–4,5–7,8–12) are
packed into a union (ln. [b]:2,3,4–7), given that their variables cannot be in scope at
the same time, e.g., a and b can safely share the same memory slot. The example also
illustrates the presence of runtime flags (ln. [b]:4–7) related to the par/and termination
(ln. [a]:8–12), which also reside in reusable slots in the static memory.

3.3. Static and Lightweight Trail Allocation
Each line of execution in CÉU needs to carry associated data, such as which event it is
currently awaiting and which code to execute when it awakes. The compiler statically
infers the maximum number of trails a program can have at the same time and creates
a static vector to hold the runtime information about them. Like normal variables,
trails that cannot be active at the same time share slots in the static memory vector.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:16

At any given moment, a trail can be awaiting in one of the following states: INACTIVE,
STACKED, FINALIZE, or in any of the events defined in the program:
enum {

INACTIVE = 0,
STACKED,
FINALIZE,
EVT A, // input void A;
EVT e, // event int e;
<...> // other events

}

All terminated or not-yet-started trails stay in the INACTIVE state and are ignored
by the scheduler. A STACKED trail holds an associated numeric stack level and can only
execute when scheduler runtime drops to that level. A FINALIZE trail represents a pend-
ing finalization block which is scheduled only when its corresponding block goes out
of scope. A trail waiting for an event stays in that event, also holding the minimum
sequence reaction number (seqno) in which it can awake (to respect delayed awaits).
In concrete terms, a trail is represented by the following struct:
struct trail t {

state t evt; // awaiting event
label t lbl; // awaking execution label
union {

unsigned char seqno; // if evt=EVT ∗
stack t stk; // if evt=STACKED

};
};

The field evt holds the state of the trail (or the event it is awaiting); the field lbl

holds the entry point in the code to execute when the trail segment is scheduled; the
third field depends on the evt field and may hold the seqno for an event, or the stack
level stk for a STACKED trail.

The size of state t depends on the number of events in an application; for an appli-
cation with less than 253 events (plus the 3 states), one byte is enough. The size of
label t depends primarily on the number of await statements in the application—each
await splits the code into two segments and requires a unique entry point in the code
for its continuation. Additionally, split & join points for parallel compositions, emit con-
tinuations, and finalization blocks also require labels. The fields seqno requires only 2
bits because the scheduler adjusts them while traversing all trails. The size of stack t

depends on the maximum depth of nested emissions but is bounded by the maximum
number of trails: in the worst case, a trail emits an event that awakes another trail,
which emits an event that awakes another trail, and so on; the last trail cannot awake
any other trail, because they are all blocked in the STACKED state.

In the context of embedded systems, the size of trail t is typically only 3 bytes (1
byte for each field), imposing a negligible memory overhead even for trails that only
await a single event and terminate. For instance, the CTP collection protocol ported to
CÉU reaches eight simultaneous lines of execution but has a memory overhead of only
2% in comparison to the original single-threaded version in C [Sant’Anna et al. 2013].

3.4. Static Scheduling and Trail Finalization
In the final generated code in C, each trail segment label representing an entry point
becomes a switch case with the associated code to execute. Figure 16 illustrates the
generation process. For the program in [a], the compiler extracts the entry points and
associated trails, e.g., the label Awake e will execute on TRAIL-0 (ln. [a]:7 and [b]:3). For
each yielding statement (e.g., emit, await, par/and, etc.), the compiler splits the trail into
two segments with associated entry points. The entry points translate to an enum in the
generated code (ln. [b]:1–10). The state of trails translates to a vector of type trail t

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:17

input void A;
event void e;
// TRAIL 0 − lbl Main
par/and do

// TRAIL 0 − lbl Main
await e;
// TRAIL 0 − lbl Awake e
// TRAIL 0 − lbl And chk

with
// TRAIL 1 − lbl And sub 2
await A;
// TRAIL 1 − lbl Awake A 1
emit e;
// TRAIL 1 − lbl Emit cont
// TRAIL 1 − lbl And chk

end
// TRAIL 0 − lbl And out
await A;
// TRAIL 0 − lbl Awake A 2

.

[a]

1 enum {
2 Main = 1, // ln 3
3 Awake e, // ln 7
4 And chk, // ln 8,15
5 And sub 2, // ln 10
6 Awake A 1, // ln 12
7 Emit cont, // ln 14
8 And out, // ln 17
9 Awake A 2 // ln 19

10 };
11
12 trail t TRLS[2] = {
13 { STACKED, Main, 0 };
14 { INACTIVE, 0, 0 };
15 };
16
17
18
19
20
21
22
23
24
25 .

[b]

1 void dispatch (trail t∗ t) {
2 switch (t−>lbl) {
3 case Main:
4 // activate TRAIL 1
5 TRLS[1].evt = STACKED;
6 TRLS[1].lbl = And sub 2;
7 TRLS[1].stk = cur stack;
8
9 // code in the 1st trail

10 // await e;
11 TRLS[0].evt = EVT e;
12 TRLS[0].lbl = Awake e;
13 TRLS[0].seq = cur seqno;
14 break;
15
16 case And sub 2:
17 // await A;
18 TRLS[1].evt = EVT A;
19 TRLS[1].lbl = Awake A 1;
20 TRLS[1].seq = cur seqno;
21 break;
22
23 <...> // other labels
24 }
25 }

[c]

Fig. 16. [a] Static allocation of trails: the comments identify the trail indexes inferred by the compiler;
[b] Entry-point labels: each trail segment has an associated numeric identifier generated by the compiler.
[c] Dispatch function: uses a switch to associate each segment identifier with the corresponding code to
execute.

with the maximum number of simultaneous trails (ln. [b]:12–15). On initialization,
TRAIL-0 is set to execute the Main entry point (ln. [b]:13), while all others are set to
INACTIVE (ln. [b]:14).

The scheduler executes in two passes: in the broadcast pass, it sets all trails that
are waiting for the current event to the state STACKED in the current numeric stack
level; in the dispatch pass, it executes each trail that is STACKED to run in the current
level, setting it immediately to INACTIVE. Since the trail space is flat and carries no
information about the program hierarchy (ln. [b]:12–15), all trails (active or inactive)
are traversed in all passes. We believe that this makes reaction times more predictable
and improves worst-case reaction times (e.g., with all trails active). However, we did
not investigate these assumptions.

During the dispatch pass, if a trail executes and emits an internal event, the sched-
uler increments the stack level and re-executes the two passes. After all trails are
properly dispatched, the scheduler decrements the stack level and resumes the previ-
ous execution. For the boot reaction, the scheduler starts from the dispatch pass, given
that the Main label is the only one that can be active at the stack level 0 (ln. [b]: 13).

The code in [c] dispatches a trail segment according to the current label to execute.
For the first reaction, it executes the Main label in TRAIL-0 (ln. 3–14). When the Main

label reaches the par/and (ln. [a]:4), it first stacks TRAIL-1 (ln. [c]:4–7) and then exe-
cutes the await e (ln. [a]:6) in TRAIL-0 (ln. [c]:9–14), respecting lexical execution order.
The dispatcher sets the running TRAIL-0 to await EVT e on label Awake e, and then halts
with a break. Then, it switches to TRAIL-1 and executes label And sub 2 (ln. [c]:6,16–21),
which sets TRAIL-1 to await EVT A and also halts.

Regarding abortion and finalization, when a par/or terminates, the scheduler makes
a broadcast pass for the FINALIZE event, but limited to the range of trails covered by
the terminating par/or. Trails that do not match the FINALIZE are set to INACTIVE, as
they have to be aborted. Given that trails in parallel are allocated in successive slots

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:18

in the static vector TRLS (ln. [b]:12–15), this pass only aborts the appropriate trails.
The subsequent dispatch pass executes the finalization code properly. Escaping a loop

that contains parallel compositions also triggers the same abortion process.

3.5. Single-Threaded Dispatching
The implementation of CÉU dispatches active trails sequentially in a single thread,
taking no advantage of multi-core CPUs. This decision comes not only from the fact
that CÉU targets constrained single-CPU embedded systems, but also because CÉU
imposes deterministic execution for intra-reaction statements.

Note that, as discussed in Section 2.3, the concurrency checks of CÉU detect trails
that are concurrent and yet do not share resources. Hence, these non-conflicting trails
could potentially execute with real parallelism in multiple cores. However, our experi-
ments with multi-core execution are actually slower than single-core execution on the
same system. Considering that we use CÉU primarily in control-dominated applica-
tions, this result is not surprising and also appears in related work [Yuan et al. 2011;
Haribi 2012]. One reason is the overhead from continuous fork-and-rejoin in small re-
actions. Another reason is contention from excessive locality of data in stackless trails
sharing contiguous static memory.

If we consider data-intensive applications, multi-core implementations can offer con-
siderable speedups. However, data-intensive computations do not typically require
a disciplined step-wise execution and can actually execute in isolated asynchronous
calls. Esterel provides a task primitive for this purpose [Berry 2000], while CÉU pro-
vides an equivalent async/thread primitive. Asynchronous execution is out of the scope
of this paper.

In previous work [Sant’Anna et al. 2013], we evaluate our implementation by rewrit-
ing some components of the TinyOS code base6 from nesC (a C variant) [Hill et al. 2000;
Gay et al. 2003] to CÉU. TinyOS provides open-source industrial-level applications and
serves as basis for a considerable amount of research in the Wireless Sensor Network
academic community. The generated code has been tested in real hardware and also
in congested networks simulated in software [Sant’Anna et al. 2013]. Figure 17 com-
pares source size (number of tokens), binary size (ROM), and memory usage (RAM) for
a number of standardized network protocols and a radio driver. The small overhead
in resource usage suggests that the gains in productivity and safety with CÉU make
it a viable alternative to C in the context of constrained embedded systems. However,
single-threaded dispatching may not be suitable for hard real-time activities. We also
measure how synchronous lengthy computations in C (e.g., hashing and compression)
can block the scheduler and affect higher-priority activities such as a radio driver.
Currently, we do not perform any worst-case reaction times analysis [Boldt et al. 2008;
Li et al. 2005]. In such cases, the system requires careful testing to avoid undersized
hardware deployment.

In future work, we plan to perform an equivalent thorough analysis in comparison to
industrial-quality code bases in Esterel. An existing Esterel implementation compiles
to sequential C code with similar techniques and also generates “code less than 10%
larger the original manually-sequenced code” for an industrial-size application [Weil
et al. 2000].

3.6. Interaction with the Environment
As a reactive language, the execution of programs in CÉU is guided entirely by the
occurrence of external input events. The binding for a specific platform (environment)

6TinyOS repository: http://github.com/tinyos/tinyos-release/

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:19

nesC 383 18896 1295

Céu 295 20542 1319

nesC 418 12266 1252

Céu 291 12836 1215

nesC 342 12708 393

Céu 258 13726 407

nesC 519 10546 283

Céu 380 10782 291

Application Language tokens
Céu
vs

nesC
ROM

Céu
vs

nesC
RAM

Céu
vs

nesC

CTP -23% 9% 2%

SRP -30% 5% -3%

DRIP -25% 8% 4%

CC2420 -27% 2% 3%

Fig. 17. Resource usage for CÉU and nesC in the domain of sensor networks.

calls hook functions in the API of the CÉU runtime whenever an external event occurs.
These calls must never interleave or parallelize execution in order to preserve the
sequential/discrete notion of time in CÉU.

Figure 18 shows our binding for TinyOS [Hill et al. 2000], which maps system call-
backs to input events in CÉU. The file ceu app.h (ln. 3) contains all definitions for the
compiled CÉU program, which are further queried through #ifdef’s. The file ceu app.c

(ln. 4) contains the runtime of CÉU with the scheduler and dispatcher pointing to the
labels defined in the program. The callback Boot.booted (ln. 6–11) is called by TinyOS
on startup, so we initialize CÉU inside it (ln. 7). If the CÉU program uses timers, we
also start a periodic timer (ln. 8–10) that triggers callback Timer.fired (ln. 13–17) every
10 milliseconds to advance the wall-clock time of CÉU (ln. 15).7 The remaining lines
map pre-defined TinyOS events that can be used in CÉU programs, such as the light
sensor (ln. 19–23) and the radio transceiver (ln. 25–36). The scheduler of TinyOS is
already synchronous by default and always executes event handlers atomically, hence,
the API calls to CÉU are properly serialized.

3.7. The Terra Virtual Machine
Terra is a system for programming wireless sensor network applications which uses
CÉU as its scripting language [Branco et al. 2015]. This approach aims to combine the
flexibility of remotely uploading code with the expressiveness and safety guarantees
of CÉU. Figure 19 shows the three basic elements of Terra: CÉU as the scripting lan-
guage, a set of customized pre-built components, and the embedded virtual-machine
engine which can disseminate and install bytecode images dynamically.

The main difference between the standard C back end and the Terra VM is the
code generation phase, which here outputs assembly instructions for the VM (instead
of statements in C). To reduce the memory footprint of applications, the VM includes
special instructions for complex and recurrent operations from the runtime of CÉU,
such as for handling events and trails.

In Terra, CÉU scripts cannot execute arbitrary C code, instead they rely on pre-built
components that can be customized for different application domains. In the domain
of sensor networks, Terra already provides components organized in four areas: radio
communication, group management, data aggregation, and local operations (e.g., ac-
cess to sensors and actuators). When creating an instance of the VM, the programmer
can choose whether or not to include each component, setting different abstraction

7We also offer a mechanism to start the underlying timer on demand to avoid the “battery unfriendly” 10ms
polling.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:20

1 implementation
2 {
3 #include "ceu app.h"
4 #include "ceu app.c"
5
6 event void Boot.booted () {
7 ceu init();
8 #ifdef CEU WCLOCKS
9 call Timer.startPeriodic(10);

10 #endif
11 }
12
13 #ifdef CEU WCLOCKS
14 event void Timer.fired () {
15 ceu wclock(10000);
16 }
17 #endif
18
19 #ifdef EVT PHOTO READDONE
20 event void Photo.readDone (int val) {
21 ceu go(EVT PHOTO READDONE, &val);
22 }
23 #endif
24
25 #ifdef EVT RADIO SENDDONE
26 event void RadioSend.sendDone (message t∗ msg) {
27 ceu go(EVT RADIO SENDDONE, &msg);
28 }
29 #endif
30
31 #ifdef EVT RADIO RECEIVE
32 event message t∗ RadioReceive.receive (message t∗ msg) {
33 ceu go(EVT RADIO RECEIVE, &msg);
34 return msg;
35 }
36 #endif
37
38 <...> // other events
39 }

Fig. 18. The TinyOS binding for CÉU. This platform-dependent template includes the C files generated
from the original application in CÉU (ceu app.h and ceu app.c) for the code generation phase.

Fig. 19. Terra programming system basic elements.

boundaries for scripts. The generated VM has to be preloaded into the embedded de-
vices before they are physically distributed.

The communication between scripts in CÉU and the components in the VM is mostly
through events: scripts emit requests through output events and await answers through
input events. Terra also provides system calls for initialization and configuration of
components (e.g., getters and setters). Figure 20.a shows a CÉU interface with the avail-
able functionality for a customized VM (with temperature and radio components). Fig-

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:21

// Output events
output void REQUEST TEMPERATURE;
output int REQUEST SEND; // sends int value

// Input events
input int TEMPERATURE DONE; // recvs int value
input void SEND DONE;

// System calls
function int getRadioID (void);

.

[a]

1 // Output events
2 void VM.out(int evt id, void∗ args) {
3 switch (id){
4 case O REQUEST TEMPERATURE:
5 call TINYOS TEMP.read();
6 <...>; // O REQUEST SEND
7 }
8 }
9

10 // Input events
11 event TINYOS TEMP.done (int val) {
12 VM.enqueue(I TEMPERATURE DONE, &val);
13 }
14 <...> // TINYOS SEND.done
15
16 // System calls
17 void VM.function(int id, void∗ params) {
18 switch (id) {
19 case F GET RADIO ID:
20 VM.push(TINYOS NODE ID);
21 }
22 }

[b]

Fig. 20. [a] CÉU interface with customized VM. [b] The routine VM.out redirects all output events to the
corresponding OS calls (ln. 1–8). Each TinyOS event callback calls VM.enqueue for the corresponding input
event (ln 10–14). System calls use VM.push for immediate return values (ln. 16–22).

ure 20.b shows the associated bindings for output events (ln. 1–8), input events (ln.
10–14), and system calls (ln. 16–22). Note that all applications for the customized
VM must comply with the same interface. In contrast, the template-based C back end
(illustrated in Figure 18) allows applications to choose possible combinations of func-
tionalities from the underlying platform at compile time.

4. RELATED WORK
CÉU was strongly influenced by Esterel but they differ in the most fundamental as-
pect of the notion of time. In CÉU, instead of clock ticks, atomic external event occur-
rences define time units. The event-driven approach of CÉU is widespread [Ouster-
hout 1996] and popular in many software communities, such as web frameworks
(e.g., jQuery [Chaffer 2009] and Node.js [Tilkov and Vinoski 2010]), GUI toolkits (e.g.,
Tcl/Tk [Ousterhout 1991] and Java Swing [Eckstein et al. 1998]), and Games [Nys-
trom 2014]. CÉU incorporates this event-triggered notion of time into the core of the
language, and is a prerequisite for the concurrency checks that enable safe shared-
memory concurrency.

In CÉU, internal events support stack-based micro reactions within external reac-
tions, providing more fine-grained control for intra-reaction execution. Some variants
of the Statecharts synchronous visual language also distinguish internal from exter-
nal events [von der Beeck 1994]. In Statemate [Harel and Naamad 1996], “reactions
to external and internal events (...) can be sensed only after completion of the step”, im-
plying queue-based execution. In Stateflow [Hamon and Rushby 2007], “the receiving
state (of the event) acts here as a function”, which is similar to CÉU’s stack-based ex-
ecution. To avoid recursion, CÉU adopts delayed awaits, while in Statemate, “loops in
the broadcasting of events (between states) are forbidden”.

Like other synchronous languages (Reactive C [Boussinot 1991], Pro-
tothreads [Dunkels et al. 2006], SOL [Karpinski and Cahill 2007], SC [von Hanxleden
2009], and PRET-C [Andalam et al. 2010]), CÉU also relies on deterministic schedul-
ing to preserve intra-reaction determinism. In addition, it also performs concurrency
checks to detect trails that, when reordered, change the observable behavior of the

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:22

program, i.e., trails that actually rely on deterministic scheduling. The SCCharts
formalism [von Hanxleden et al. 2014a] proposes sequentially constructive programs
that allow “shared variables to have multiple values per tick as long as these values are
explicitly ordered by sequential statements” [von Hanxleden et al. 2014b]. This relaxes
Esterel’s restriction for read-after-write accesses only (e.g., a signal must be emitted to
be present) and permits write-after-read accesses typical in imperative programs (e.g.,
test and set). This approach still restricts concurrent accesses but does not impose
strict deterministic scheduling as CÉU does.

Esterel+Delay [Bourke and Sowmya 2009] is a non-intrusive extension to Esterel to
program in terms of physical time with delay statements. The global transformation re-
lies on a special platform statement that describes available timers in the system (e.g.,
sample-driven or interrupt-driven). It then expands delay statements into existing Es-
terel statements in a way that the desired semantics can be realised in the platform.
In contrast, CÉU makes physical time a special input event that feeds the runtime
with an associated time to elapse, which is decremented from all awaiting trails. The
compensation scheme of CÉU guarantees that trails awake in the correct order and
that errors are not propagated on subsequent awaits. Interrupt-driven timers are also
supported with a hook callback that the runtime calls whenever the program awaits
on an earlier timer.

Regarding resource management, Esterel supports a finalization mechanism to un-
conditionally execute a series of statements on abortion. As a complement to final-
ization, CÉU also tracks pointers representing resources that cross C boundaries and
forces the programmer to provide associated finalizers.

ReactiveML [Mandel and Pouzet 2005] and URBI [Baillie 2005] extend the syn-
chronous model with dynamic lines of execution. The implementations use coroutines
or CPS transformations and rely on heap allocation and/or garbage collection, diverg-
ing from our goals regarding resource efficiency and static bounds for memory and
execution time. We discuss dynamic abstractions in CÉU in previous work [Sant’Anna
et al. 2015].

Esterel has different compilation back ends that synthesizes to software and also
to hardware circuits [Berry 1999; Dayaratne et al. 2005; Edwards 2003]. Among the
software-based approaches, SAXO–RT [Closse et al. 2002; Weil et al. 2000] is the clos-
est to our implementation with respect to trail allocation and scheduling: the compiler
slices programs into “control points” (analogous to our “entry points”) and rearranges
them into a directed acyclic graph. Then, it flattens the graph into sequential code
in C suitable for static scheduling. Esterel compilation is more sophisticated since it
involves solving data dependency relations to comply with its constructive semantics.

A number of virtual machines have been proposed for embedded systems. Darjeel-
ing [Brouwers et al. 2008] and TakaTuka [Aslam et al. 2010] are complete Java VMs
targeting constrained embedded systems with support for multithreading and garbage
collection. The The real-time specification for Java [Bollella and Gosling 2000; Arm-
bruster et al. 2007] provides region-based memory that is not subject to garbage col-
lection, and threads that are not preemptable by the collector. Java has antagonistic
design choices in comparison to CÉU: it does not impose static bounds on memory
usage and execution time, and provides preemptive multithreading which requires
synchronization primitives for accessing shared memory. An existing Esterel-based
VM [Plummer et al. 2006] makes similar design choices to our work. To reduce code
size, the VM has a specialized instruction set to deal with events and concurrency con-
structs that are particular to Esterel. The proposed VM is only a proof of concept, with
no support for arithmetic operations, external system calls, or remote reprogramming.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:23

5. CONCLUSION
We present the design and implementation of CÉU, a synchronous reactive language
inspired by Esterel with event-driven semantics and fine-grained control for intra-
reaction execution. On the one hand, this approach is familiar to programmers in gen-
eral, abstracting tick sampling with reactions to unique events from their application
domain (e.g., a button click or an expiring timer). On the other hand, this level of ab-
straction does not suit systems with hard real-time requirements in which interacting
directly with a concrete notion of tick is more robust.

CÉU is a concurrency-safe language, employing static checks to ensure that the high
degree of concurrency in embedded systems does not pose safety threats to applica-
tions. As a summary, the following safety properties hold for all programs that success-
fully compile in CÉU: time and memory-bounded reactions to the environment (except
for system calls), no race conditions in shared memory, reliable abortion for activities
handling resources, and automatic synchronization for timers. These properties are
usually desirable in embedded applications and are guaranteed by design.

CÉU is a resource-efficient language suitable for constrained embedded systems. The
reference implementation compiles to portable event-driven code in C, with no special
requirements for OS threads or per-trail data stacks. The VM implementation uses
the same front end and imposes no semantic restrictions, being equally suitable for
constrained systems.

CÉU is a practical language with expressive control constructs, such as lexically
scoped parallel compositions, convenient first-class timers, and a stack-based mecha-
nism for internal signalling. Programs interoperate seamlessly with C, and can take
advantage of existing libraries, lowering the entry barrier for adoption. CÉU has an
open source implementation and bindings for TinyOS, Arduino, and the SDL graphi-
cal library.8

For the past three years, we have been teaching CÉU to undergraduate and graduate
students in courses on distributed systems and reactive programming. Our experience
shows that students take advantage of the sequential-imperative style of CÉU and can
implement non-trivial concurrent applications in a few weeks. More recently, a com-
pany specialized in embedded systems (not related to our research group) has released
a product based on CÉU.

REFERENCES
Andalam, S., Roop, P., and Girault, A. 2010. Predictable multithreading of embedded applications using

PRET-C. In Proceeding of MEMOCODE’10. IEEE, 159–168.
Armbruster, A., Baker, J., Cunei, A., Flack, C., Holmes, D., Pizlo, F., Pla, E., Prochazka, M., and Vitek, J.

2007. A real-time Java virtual machine with applications in avionics. ACM Transactions on Embedded
Computing Systems (TECS) 7, 1 (2007), 5.

Aslam, F., Fennell, L., Schindelhauer, C., Thiemann, P., Ernst, G., Haussmann, E., Rührup, S., and Uzmi,
Z. A. 2010. Optimized Java binary and virtual machine for tiny motes. In Proceedings of DCOSS’10.
Springer, 15–30.

Baillie, J.-C. 2005. Urbi: Towards a universal robotic low-level programming language. In International
Conference on Intelligent Robots and Systems. IEEE, 820–825.

Benveniste, A., Caspi, P., Edwards, S. A., Halbwachs, N., Guernic, P. L., and Simone, R. D. 2003. The syn-
chronous languages twelve years later. In Proceedings of the IEEE, Vol. 91. 64–83.

Berry, G. 1993. Preemption in Concurrent Systems.. In FSTTCS (LNCS), Vol. 761. Springer, 72–93.
Berry, G. 1999. The Constructive Semantics of Pure Esterel (draft version 3). Ecole des Mines de Paris and

INRIA.
Berry, G. 2000. The Esterel-V5 Language Primer. CMA and Inria, Sophia-Antipolis, France. Version 5.10,

Release 2.0.

8Website of CÉU: http://www.ceu-lang.org/

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:24

Berry, G., Ramesh, S., and Shyamasundar, R. 1993. Communicating reactive processes. In Proceedings of
POPL’93. ACM, 85–98.

Boldt, M., Traulsen, C., and von Hanxleden, R. 2008. Worst case reaction time analysis of concurrent reactive
programs. Electronic Notes in Theoretical Computer Science 203, 4 (2008), 65–79.

Bollella, G. and Gosling, J. 2000. The real-time specification for Java. Computer 33, 6 (2000), 47–54.
Bourke, T. and Sowmya, A. 2009. Delays in Esterel. SYNCHRON09 (2009), 55.
Boussinot, F. 1991. Reactive C: An extension of C to program reactive systems. Software: Practice and Ex-

perience 21, 4 (1991), 401–428.
Boussinot, F. 1998. SugarCubes implementation of causality. (1998).
Boussinot, F. and De Simone, R. 1991. The Esterel language. Proc. IEEE 79, 9 (Sep 1991), 1293–1304.
Branco, A., Sant’anna, F., Ierusalimschy, R., Rodriguez, N., and Rossetto, S. 2015. Terra: Flexibility and

Safety in Wireless Sensor Networks. ACM Trans. Sen. Netw. 11, 4, Article 59 (Sept. 2015), 27 pages.
DOI:http://dx.doi.org/10.1145/2811267

Brouwers, N., Corke, P., and Langendoen, K. 2008. Darjeeling, a Java compatible virtual machine for mi-
crocontrollers. In Proceedings of the ACM/IFIP/USENIX Middleware’08 Conference Companion. ACM,
18–23.

Chaffer, J. 2009. Learning JQuery 1.3: Better Interaction and Web Development with Simple JavaScript
Techniques. Packt Publishing Ltd.

Closse, E., Poize, M., Pulou, J., Venier, P., and Weil, D. 2002. Saxo–RT: Interpreting Esterel semantic on a
sequential execution structure. Electronic Notes in Theoretical Computer Science 65, 5 (2002), 80–94.

Dayaratne, M. W. S., Roop, P. S., and Salcic, Z. 2005. Direct Execution of Esterel Using Reactive Micropro-
cessors. In Proceedings of SLAP’05.

de Moura, A. L. and Ierusalimschy, R. 2009. Revisiting coroutines. ACM TOPLAS 31, 2 (Feb. 2009), 6:1–6:31.
de Simone, R., Talpin, J.-P., and Potop-Butucaru, D. 2005. The Synchronous Hypothesis and Synchronous

Languages. In Embedded Systems Handbook, R. Zurawski (Ed.).
Dunkels, A., Schmidt, O., Voigt, T., and Ali, M. 2006. Protothreads: simplifying event-driven programming

of memory-constrained embedded systems. In Proceedings of SenSys’06. ACM, 29–42.
Eckstein, R., Loy, M., and Wood, D. 1998. Java swing. O’Reilly & Associates, Inc.
Edwards, S. A. 1999. Compiling Esterel into sequential code. In 7th International Workshop on Hardware/-

Software Codesign. ACM, 147–151.
Edwards, S. A. 2003. Tutorial: Compiling concurrent languages for sequential processors. ACM Transactions

on Design Automation of Electronic Systems 8, 2 (2003), 141–187.
Edwards, S. A. 2005. Using and Compiling Esterel. MEMOCODE’05 Tutorial. (July 2005).
Gay, D., Levis, P., von Behren, R., Welsh, M., Brewer, E., and Culler, D. 2003. The nesC Language: A Holistic

Approach to Networked Embedded Systems. In Proceedings of PLDI’03. 1–11.
Halbwachs, N. 1994. Synchronous programming of reactive systems. Vol. 215. Springer Science & Business

Media.
Hamon, G. and Rushby, J. 2007. An operational semantics for Stateflow. International Journal on Software

Tools for Technology Transfer 9, 5-6 (2007), 447–456.
Harel, D. and Naamad, A. 1996. The STATEMATE semantics of statecharts. ACM Transactions on Software

Engineering and Methodology 5, 4 (1996), 293–333.
Haribi, W. 2012. Compiling Esterel for Multi-Core Execution. Synchrone Sprachen (2012), 45.
Hill, J., Szewczyk, R., Woo, A., Hollar, S., Culler, D., and Pister, K. 2000. System architecture directions for

networked sensors. SIGPLAN Notices 35 (November 2000), 93–104. Issue 11.
Karpinski, M. and Cahill, V. 2007. High-Level Application Development is Realistic for Wireless Sensor

Networks. In Proceedings of SECON’07. 610–619.
Kasten, O. and Römer, K. 2005. Beyond Event Handlers: Programming Wireless Sensors with Attributed

State Machines. In Proceedings of IPSN ’05. 45–52.
Kopetz, H. 2011. Real-time systems: design principles for distributed embedded applications. Springer Sci-

ence & Business Media.
Li, X., Lukoschus, J., Boldt, M., Harder, M., and von Hanxleden, R. 2005. An Esterel processor with full

preemption support and its worst case reaction time analysis. In Proceedings of CASES’05. ACM, 225–
236.

Mandel, L. and Pouzet, M. 2005. ReactiveML: a reactive extension to ML. In Proceedings of PPDP’05. ACM,
82–93.

Nystrom, R. 2014. Game Programming Patterns. Genever Benning.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:25

Ousterhout, J. K. 1991. An X11 Toolkit Based on the Tcl Language.. In USENIX Winter. 105–116.
Ousterhout, J. K. 1996. Why Threads Are A Bad Idea (for most purposes). (January 1996).
Plummer, B., Khajanchi, M., and Edwards, S. A. 2006. An Esterel virtual machine for embedded systems. In

Proceedings of SLAP’06. Citeseer, Vienna, Austria.
Roop, P. S., Salcic, Z., and Dayaratne, M. 2004. Towards direct execution of Esterel programs on reactive

processors. In Proceedings of EMSOFT’04. ACM, 240–248.
Sant’Anna, F. 2013. Safe System-level Concurrency on Resource-Constrained Nodes with Céu. Ph.D. Disser-

tation. PUC–Rio.
Sant’Anna, F., Rodriguez, N., and Ierusalimschy, R. 2012. Céu: Embedded, Safe, and Reactive Programming.

Technical Report 12/12. PUC-Rio.
Sant’Anna, F., Rodriguez, N., and Ierusalimschy, R. 2013. Advanced Control Reactivity for Embedded Sys-

tems. Workshop on Reactivity, Events and Modularity (REM’13). (2013).
Sant’Anna, F., Rodriguez, N., and Ierusalimschy, R. 2015. Structured Synchronous Reactive Programming

with Céu. In Proceedings of Modularity’15.
Sant’Anna, F., Rodriguez, N., Ierusalimschy, R., Landsiedel, O., and Tsigas, P. 2013. Safe System-level Con-

currency on Resource-Constrained Nodes. In Proceedings of SenSys’13. ACM.
Schneider, K. and Wenz, M. 2001. A new method for compiling schizophrenic synchronous programs. In

Proceedings of CASES’01. ACM, 49–58.
Sentovich, E. M. 1997. Quick conservative causality analysis. In System Synthesis, 1997. Proceedings., Tenth

International Symposium on. IEEE, 2–8.
Shiple, T. R., Berry, G., and Touati, H. 1996. Constructive analysis of cyclic circuits. In European Design and

Test Conference, 1996. ED&TC 96. Proceedings. IEEE, 328–333.
Tardieu, O. and De Simone, R. 2004. Curing schizophrenia by program rewriting in Esterel. In Proceedings

of MEMOCODE’04. IEEE, 39–48.
Tilkov, S. and Vinoski, S. 2010. Node.js: Using JavaScript to build high-performance network programs.

IEEE Internet Computing 6 (2010), 80–83.
von der Beeck, M. 1994. A comparison of statecharts variants. In Proceedings of FTRTFT’94. Springer, 128–

148.
von Hanxleden, R. 2009. SyncCharts in C: a proposal for light-weight, deterministic concurrency. In Pro-

ceedings EMSOFT’09. ACM, 225–234.
von Hanxleden, R., Duderstadt, B., Motika, C., Smyth, S., Mendler, M., Aguado, J., Mercer, S., and

O’Brien, O. 2014a. SCCharts: Sequentially Constructive Statecharts for Safety-critical Applications:
HW/SW-synthesis for a Conservative Extension of Synchronous Statecharts. In Proceedings of PLDI’14
(PLDI’14). ACM, New York, NY, USA, 372–383. DOI:http://dx.doi.org/10.1145/2594291.2594310

von Hanxleden, R., Mendler, M., Aguado, J., Duderstadt, B., Fuhrmann, I., Motika, C., Mercer, S., O’brien,
O., and Roop, P. 2014b. Sequentially Constructive Concurrency—A Conservative Extension of the Syn-
chronous Model of Computation. ACM Trans. Embed. Comput. Syst. 13, 4s, Article 144 (July 2014), 26
pages. DOI:http://dx.doi.org/10.1145/2627350

Weil, D., Bertin, V., Closse, E., Poize, M., Venier, P., and Pulou, J. 2000. Efficient Compilation of ESTEREL
for Real-time Embedded Systems. In Proceedings of CASES’00. ACM, New York, NY, USA, 2–8.

Yuan, S., Yoong, L. H., and Roop, P. S. 2011. Compiling Esterel for multi-core execution. In Digital System
Design (DSD), 2011 14th Euromicro Conference on. IEEE, 727–735.

Yun, J.-H., Kim, C.-J., Kim, S., Choe, K.-M., and Han, T. 2013. Detection of harmful schizophrenic statements
in Esterel. ACM Transactions on Embedded Computing Systems (TECS) 12, 3 (2013), 80.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

