
CÉU-MEDIA: A Multimedia Library for the Synchronous
Language CÉU

Removed for blind review

ABSTRACT
We investigate the use of the synchronous language Céu for
programming multimedia applications, in particular, those
applications that can be described as a set of synchronized
media objects. The result of this investigation is Céu-Media,
a library for programming multimedia Céu. The program-
ming model and abstractions of Céu-Media are similar to
that of the traditional high-level multimedia languages NCL
and SMIL, but avoids their inflexibility, ambiguity, and syn-
chronization problems. This is possible because Céu-Media
takes full advantage of Céu features: its integration with C,
its abstraction mechanisms, and its semantics. And because,
its implementation ensures that the properties Céu seman-
tics are reflected in the output multimedia presentation. The
paper compares the synchronization paradigm of Céu with
those of NCL and SMIL, discusses the implementation of
Céu-Media, and validates the proposal by examining the
implementation of some representative use cases.

CCS Concepts
•Software and its engineering→Development frame-
works and environments; Application specific develop-
ment environments;

Keywords
Multimedia; Céu; Céu-Media; Inter-media synchroniza-
tion; Synchronous Hypothesis

1. INTRODUCTION
We present Céu-Media, a library for authoring multime-

dia applications using the synchronous language Céu. With
Céu-Media authors describe multimedia presentations in
an abstraction level close to that adopted by traditional
high-level multimedia languages, such as NCL or SMIL,
while avoiding most of their limitations and pitfalls (inflex-
ibility, ambiguity, and logical and physical dyssynchrony).
Why another multimedia library? Because current libraries

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

WebMedia ’16 Teresina, Piauí Brazil
© 2016 ACM. ISBN . . . $15.00

DOI:

(GStreamer, FFmpeg, QT-Multimedia, LibVLC, etc.) are
too low-level; they assume specialist users and rely on com-
plex programming models. And also because there are few
proposals that try to apply the synchronous approach to the
problem of multimedia synchronization—at least at the level
of abstraction we are considering.

The first advantage of using Céu-Media is its flexibility.
Under the hood one has a full-fledged programming lan-
guage: using Céu constructs, one can create abstractions
more suitable to particular scenarios by combining those al-
ready defined by Céu-Media. Flexibility often comes with
the price of added complexity, but that is a price one should
be willing to pay when extending a language. In contrast,
NCL and SMIL are inflexible languages: any extension must
be done externally via pre-processors or via scripts (Lua or
JavaScript) that modify the original program.

The second advantage of Céu-Media is the straightfor-
ward, accurate semantics induced by the synchronous hy-
pothesis and enforced determinism. Céu is a synchronous
language with a precise semantics: a program reacts to ex-
ternal events in a way that these reactions are conceptually
instantaneous and always deterministic. The passage of time
is represented by an ordinary event and can be controlled
precisely by programs. This precise treatment of (logical)
time is essential to the description of any synchronization
scenario, and especially to those occurring in multimedia.
In contrast, the semantics of NCL and SMIL programs is
notoriously ambiguous and inconsistent [8].

The third and last advantage of Céu-Media we discuss
in the paper has to do with how its multimedia concepts are
implemented. The library was built on top of GStreamer,
which is an industry-grade framework for the construction
of multimedia systems. In its implementation, we strove
to maintain as much as possible the accuracy imposed by
the synchronous semantics of Céu. For instance, in Céu,
time passes only when the program says so, which means
that, when programming with Céu-Media, audio and video
samples are generated only when the program says so. This
precise control of the output presentation cannot be achieved
(not even specified) in NCL and SMIL, or similar languages.

The rest of the paper is organized as follows. In Section 2,
we present briefly the Céu programming language. In Sec-
tion 3, we compare the general synchronization constructs of
Céu with those of NCL and SMIL. In Section 4, we present
the architecture and implementation of Céu-Media. In Sec-
tion 5, we discuss some use cases and examine their imple-
mentation in Céu-Media. Finally, in Section 6 we draw our
conclusions and point out future work.

2. CÉU IN A NUTSHELL
Céu [14] is a synchronous programming language for de-

veloping safe concurrent programs. By synchronous, we
mean that its programs assume the synchronous hypothe-
sis [5], i.e., that program reactions are conceptually instan-
taneous and always terminate. Added to this hypothesis,
pure Céu programs are by definition deterministic, hence
the adjective “safe”. If we view a Céu program as a black-
box that reacts to external events, then the synchronous
part guarantees that such reactions are instantaneous (from
the point of view of program logic), while the deterministic
part guarantees that the occurrence of an event in a given
program state always leads to the same final state.

Determinism is a desirable property of systems in general,
but it is even more desirable when concurrency is involved—
nondeterministic, concurrent programs are a profuse source
of bugs, they are often harder to compose, debug, and ana-
lyze than their deterministic counterparts [4]. In Céu, con-
currency can only be programmed via the compositions par,
par/or and par/and, which create concurrent execution trails
when evaluated. The execution of such trails is necessar-
ily deterministic and the Céu compiler enforces mutual ex-
clusion between them so that access to shared variables is
always consistent [14].

To illustrate these concepts, consider the Céu program
depicted in Listing 1. This program blinks two LEDs, Led1
and Led2, by changing their state (on or off) every couple of
seconds. When the program starts, the LEDs go on blinking
until a key is pressed, i.e., event KEY occurs, at which point
the program terminates.

1 input void KEY;
2 par/or
3 do /* trail 1 */
4 loop do
5 await 2s;
6 _Led1_on ()
7 await 2s;
8 _Led1_off ()
9 end

10 with /* trail 2 */
11 loop do
12 await 4s;
13 _Led2_on ()
14 await 4s;
15 _Led2_off ()
16 end
17 with /* trail 3 */
18 await KEY;
19 end

Listing 1. Blinking LEDs in CÉU.

In Listing 1, line 1 declares the external input event KEY.
Lines 2–19 define a parallel composition having 3 trails. The
first trail (lines 4–9) executes an infinite loop that awaits 2
seconds, turns Led1 on, awaits 2 more seconds and turns it
off. The second trail (lines 11–16) is similar, but it awaits 4
seconds to turn Led2 on and off. The last trail (line 18) awaits
for event key and terminates. When the program starts,
the three trails are started; trails 1 and 2 run indefinitely,
blinking their corresponding LEDs with the programmed
frequency, while trail 3 simply waits for a KEY before termi-
nating. Because the par/or composition ends when any of
its trails end, the three trails will join at line 19 when trail 3
terminates with a key press.

Note that Céu trails are not operating-system threads.
OS threads can be preempted at any time by the scheduler,
which often leads to nondeterminism and synchronization

problems. In contrast, the Céu compiler generates a single-
threaded program that schedules the execution of its trails
in a completely deterministic manner. The trail-scheduling
algorithm of Céu can be summarized in four steps:

1. The program initiates with a single trail.
2. Then its active trails execute until they block (wait for

some external input event) or terminate.
3. When all trails block, which inevitably happens due to

the synchronous hypothesis, the reaction is done; the
program goes idle and the environment takes control.

4. If an external input event e occurs, the environment
gives control back to the program; all trails that are
blocked waiting for event e are resumed, and we are
back in step (2)

Figure 1 depicts a timeline representing the state of the
LEDs of the program in Listing 1. The synchronous and
deterministic execution model of Céu guarantees that the
pattern presented in this 18-second timeline is repeated in-
definitely until some key is pressed by the user. Every 4
seconds, the program executes three function calls in ex-
actly the same order. First, it turns Led1 on and off (lines 6
and 8 of Listing 1), and then either turns Led2 on (line 13)
or off (line 15). From the program’s perspective, these calls
are simultaneous; they occur in the same reaction, i.e., both
trails react to the same event (viz., the passage of 4 seconds),
and therefore (logical) time does not pass between the calls.

Figure 1. Timeline of the blinking LEDs program.

Given an input program such as that of Listing 1, the Céu
compiler generates a corresponding C program. In this pro-
cess, it checks for inconsistencies and makes sure that the
properties advertised by the semantics of Céu (synchronic-
ity, termination, consistency and determinism) are reflected
in the resulting C logic. The exceptions are native C calls,
which are the statements starting with an underscore (),
e.g., lines 6, 8, 13 and 15 in Listing 1. These are mapped
directly into C calls which cannot be checked by the com-
piler. The drawback here is that if a native call performs
a blocking operation, i.e., one that takes a non-negligible
time to return, the logical time may diverge from the physi-
cal time. For instance, the “2s” written in the Céu program
may not correspond exactly to two physical seconds (though
they will always mean two logical seconds, i.e., two occur-
rences of event “second”). That said, for our purposes this is
not a big problem. We expose a high-level pure Céu API to
application authors, namely, Céu-Media, so that in general
they do not write custom C code.

3. COMPARING CÉU TO NCL AND SMIL
Céu-Media aims to describe multimedia presentations in

a strictly precise way in both dimensions logical and phys-
ical, i.e., from the point of view of the program state and

the resulting audio and video samples. To validate the Céu-
Media approach, we compare versions of presentations writ-
ten in Céu against versions of similar presentations written
in traditional multimedia languages, and how these specifi-
cations are realized by the corresponding implementations.
Céu-Media targets non-specialist users. Thus here we are
mainly concerned with high-level multimedia languages, i.e.,
those with a concept of “media object” and synchronization
primitives that allow for combining objects in groups and de-
scribing their behavior in time. For this reason, we choose
NCL 3.0 [1] and SMIL 3 [16].

Since pure Céu does not deal with media objects, in a first
approach to compare it with NCL and SMIL we focus only
on the synchronization model and corresponding primitives
offered by the languages. The Céu program of Listing 1
can be viewed as a multimedia presentation if we replace
the LEDs by media objects. In this case, two media objects
(e.g., texts, images, audios, videos, etc.) are to be presented
on screen in a loop. The first should be presented for two
seconds, every two seconds, and the second should be pre-
sented for four seconds, every four seconds. At any moment,
if the user presses any key, the presentation should halt.

3.1 Blinking LEDs in NCL
Listing 2 depicts the relevant parts of the multimedia ver-

sion of the blinking LEDs program written in NCL. In the
listing, each LED state is represented by a corresponding
media object (lines 4–15). Media object Led1_on (lines 4–6)
displays an image on screen for two seconds, while Led1_off

(lines 7–9) displays nothing on screen for two seconds and
terminates. Similarly, Led2_on (lines 10–12) displays an im-
age on screen for four seconds, and Led2_off (lines 13–15)
waits for four seconds and terminates. The duration of each
object is given by the value of its explicityDur property
(lines 5, 8, 11 and 14), and their presentation is interleaved
by four links (lines 16–31).

When the program of Listing 2 starts, objects Led1_off

and Led2_off are started (lines 2–3). These behave as count-
down timers that simply wait for some time (two and four
seconds, respectively) and end. When Led1_off ends, the
first link (lines 16–19) is triggered and object Led1_on is
started. Thus after two seconds, the first LED is displayed
for two seconds, and after that the countdown timer Led1_off
is restarted (lines 20–22). Similarly, when Led2_off ends,
the third link (lines 25–27) is triggered and object Led2_on

is started. Thus after four seconds, the second LED is dis-
played for four seconds, and after that Led2_off is restarted
(lines 28–31). The last link (lines 32–35) establishes that
when some specific key is pressed by the user the whole
body (lines 1–36) is stopped, and the program terminates.

At first sight, it seems that the program of Listing 2 does
what it is supposed to do: the first LED object is presented
for 2s every two seconds, the second LED object is presented
for 4s every four seconds, and the program terminates when
the user presses a key. However, there is an issue with this
program: its logical and physical behavior is simply unpre-
dictable. The constants “2s” and “4s” are meaningless from
a logical point of view. There is no guarantee that the sec-
ond and fourth links (lines 20–22 and 28–31), which must
be triggered exactly every 8s, will be triggered in the same
time instant. In fact, in NCL, even the notion of what con-
stitutes a “time instant” is open to interpretation. We can
only hope that both are triggered as close as possible to each

1 <body id="blink">
2 <port id=" pLed1_off" component =" Led1_off"/>
3 <port id=" pLed2_off" component =" Led2_off"/>
4 <media id=" Led1_on" src="Led1.png">
5 <property name=" explicitDur" value ="2s"/>
6 </media >
7 <media id=" Led1_off">
8 <property name=" explicitDur" value ="2s"/>
9 </media >

10 <media id=" Led2_on" src="Led2.png">
11 <property name=" explicitDur" value ="4s"/>
12 </media >
13 <media id=" Led2_off">
14 <property name=" explicitDur" value ="4s"/>
15 </media >
16 <link xconnector =" onEndStart">
17 <bind role="onEnd" component =" Led1_off"/>
18 <bind role="start" component =" Led1_on"/>
19 </link >
20 <link xconnector =" onEndStart">
21 <bind role="onEnd" component =" Led1_on"/>
22 <bind role="start" component =" Led1_off"/>
23 </link >
24 <link xconnector =" onEndStart">
25 <bind role="onEnd" component =" Led2_off"/>
26 <bind role="start" component =" Led2_on"/>
27 </link >
28 <link xconnector =" onEndStart">
29 <bind role="onEnd" component =" Led2_on"/>
30 <bind role="start" component =" Led2_off"/>
31 </link >
32 <link xconnector =" onKeySelectionStop">
33 <bind role=" onKeySelection" component ="blink"/>
34 <bind role="stop" component ="blink"/>
35 </link >
36 </body >

Listing 2. Blinking LEDs in NCL.

other. Moreover, if they happen to be triggered at exactly
the same time, then there is no way to tell which of them
will be executed first since link evaluation is necessarily non-
deterministic.

These are logical problems in the sense that they ex-
ist independently of a particular implementation—they are
caused by the ambiguous semantics of NCL and affect di-
rectly the mental model used by programmers to reason
about program behavior. This loose semantics is also re-
flected in implementations in the form of physical dyssyn-
chrony. Even if we assume that the links are triggered at
the same logical time we have no guarantee that the LEDs
will appear at the same physical time on screen. Ideally,
they should appear in the same video frame, but the lan-
guage does not enforce that when a link is triggered, actions
should be executed synchronously (at the same logical tick).

Note that the previous issues (logical meaninglessness and
nondeterminism) do no occur in Céu: programs have a syn-
chronous, deterministic semantics, with an unambiguous no-
tion of logical time, and count with safe concurrency primi-
tives that are checked at compile time. What Céu does not
offer are high-level constructs for manipulating media ob-
jects; such extensions are discussed in Section 4. But before
that we need to examine the SMIL version of the blinking
LEDs program.

3.2 Blinking LEDs in SMIL
Listing 3 depicts the relevant parts of the blinking LEDs

program written in SMIL. In the listing, each LED is repre-
sented by an image. The first image Led1_on (line 3) begins
two seconds after its parent container is started (lines 2–4)
and is displayed for two seconds (dur="2s"). Similarly, the
second image Led2_on (line 6) begins four seconds after its
parent container is started (lines 5–7) and is displayed for

four seconds (dur="4s"). The innermost <par> containers are
repeated indefinitely (repeatCount="indefinite"), and both
are children of a parent <par> container (lines 1–8) that
starts them in parallel as soon as the program starts and exe-
cutes until key“q”is pressed by the user (end="accessKey(q)").

1 <par end=" accessKey(q)">
2 <par repeatCount =" indefinite" >
3
4 </par >
5 <par repeatCount =" indefinite">
6
7 </par >
8 </par >

Listing 3. Blinking LEDs in SMIL.

The SMIL program should behave exactly as the previous
NCL program. After the program is started, Led1_on will
be presented for 2s seconds every two seconds, and Led2_on

will be presented for 4s every four seconds. This situation
continues until the user presses key “q”, at which point the
<par> container (and consequently the whole program) ter-
minates. Though the program of Listing 3 is conciser than
its NCL version, it suffers from same semantical problems.
SMIL also does not have a precise (unambiguous and well-
defined) notion of logical time, so the meaning of terms such
as “at the same time”, and of constants such as “2s” and “4s”
is open to interpretation.

In SMIL logical time may pass even while “instantaneous”
operations are being evaluated. For instance, the language
does not guarantee there is no delay between subsequent rep-
etitions of the innermost <par> containers (lines 2–4 and 5–
7) of the previous program. This possibility is described
in the SMIL 3.0 specification [16, cf. Section “Event Sensi-
tive”]: “[The] timing of event propagation is implementation
dependent, and so there are occasions in which delivery of
an event may not occur because an intervening state change
in the timegraph precludes event delivery.”

3.3 Synchronous languages and multimedia
The synchronous programming model was developed in

the 1980s by French research groups for the trusted design of
safe-critical embedded systems. The languages Esterel [6],
Lustre [10], and Signal [9] are the main products of this
initial effort. Esterel is a control-oriented imperative lan-
guage, while Lustre and Signal are data-oriented declarative
languages—the former is a functional language and the lat-
ter is an equational language. Céu is similar to Esterel but
has a simpler semantics. The conspicuous features of all
these languages is that they assume the synchronous hy-
pothesis, i.e, that the program always reacts fast enough to
external stimuli, making the actual reaction time negligible.

That this hypothesis can be maintained in real-time mul-
timedia systems is demonstrated by the existence of spe-
cialized languages for real-time audio and video processing
that implicitly assume it. (This implicit assumption is re-
marked by K. Barkati and P. Jouvelot [3].) Examples of
such languages are Pure Data [12], ChucK [17], CLAM [2],
and Faust [11]. ChucK (imperative) and Faust (functional)
deal only with audio, while Pure Data and CLAM (both
“dataflow” languages) deal with audio and video. These lan-
guages are related to Céu-Media but they target a differ-
ent audience. Céu-Media targets nonspecialist users whose
main interest is to build a multimedia presentation consist-
ing of synchronized media objects. In contrast, ChucK,
CLAM, Pure Data, and Faust were designed with digital

signal processing in mind. They target specialist users who
know what their doing at the sample level and want com-
plete control over the resulting multimedia signal.

4. CÉU-MEDIA
Céu-Media1 is a library for programming multimedia ap-

plications in Céu. The library itself consists of three main
concepts: Scene, Media, and Player. A Scene represents a
top-level OS window with audio and (possibly) video out-
put. A Media holds the description of a media object. And a
Player renders a Media on a Scene. Listing 4 depicts a simple
Céu-Media application that uses these concepts to present
two side-by-side videos for 15s on screen, restarting them
wherever both of them end.

1 var Scene s with
2 this.size = Size (1080, 720);
3 end;
4 var Media m1 = Media.VIDEO (" video1.ogv",
5 Region(0, 0, 540, 720), 1.0);
6 var Media m2 = Media.VIDEO (" video2.ogv",
7 Region (540, 0, 540, 720), 1.0);
8 watching 15s do
9 loop do

10 par/and do
11 await Player.play (m1, &s);
12 with
13 await Player.play (m2, &s);
14 end
15 end
16 end

Listing 4. Two side-by-side videos in Céu-Media.

Lines 1–3 define a Scene with 1080x720 pixels and store
it in variable s. Lines 5–8 declare two Media descriptions,
both videos. The first video (lines 5–6), variable m1, has as
source “video1.ogv”; it is to be played on the region delim-
ited by the given rectangle (Region (0,0,540,720)) with its
normal volume (1.0). Similarly, the second video (lines 7–8),
variable m2, has as source “video2.ogv” and is to be played
on given region also with its normal volume. Note that
these Media declarations are only descriptions used by play-
ers to determined what they will render on a scene. Thus
at this point (line 8) nothing has happened and the screen
is empty—in fact, time has not even passed.

The next statement is a watching block (lines 9–17). It
defines an execution block with a duration of 15s, that is, a
block that execute its body for at most 15 seconds (i.e.,
15 occurrences of event “second”) and terminates. Here
the body (lines 10–16) consists of an infinite loop whose
sole statement is a par/and composition (lines 11–15) with
two execution trails, both also consisting of a single state-
ment (line 12 and line 14). Once executed, the par/and state-
ment starts its trails in parallel and terminates only after
both of them terminate. In this case, the first trail simply
creates an anonymous player to render media m1 on scene s,
starts it, and waits for its end. Similarly, the second trail
creates an anonymous player to render m2 on s, starts it, and
waits for its end.

When the previous program starts, the two players are
created and start to render the corresponding video ob-
jects in parallel. Whenever both of them end, the whole
par/and statement terminates and is immediately restarted
the by the outermost loop, which means that new anony-
mous players are created and started. This process goes on
until the 15th second is reached, at which point the watching

1http://rodrimc.github.io/ceu-media

http://rodrimc.github.io/ceu-media

block, and thus the whole program, terminates. Note that
the await statements are the only instructions that actually
block. All other instructions are conceptually instantaneous
and execute in no time.

In practice, the Media is simply a structured data type,
while Scene and Player are Céu organisms: abstractions that
combine data and behavior [13]. Before delving into their
implementation we introduce some terminology to frame the
discussion. Thinking in terms of modeling concepts and
their relative level of abstraction, we regard the process of
writing a multimedia application in Céu-Media as consist-
ing of four layers, as depicted in Figure 2.

Figure 2. The abstraction layers of the authoring process.

Layer 0 is the base layer; it is simply a C API for pro-
gramming multimedia. Currently, this C API is LibPlay2, a
simple multimedia library based on GStreamer. Layer 1 is
Céu-Media itself; it is written in Céu upon Layer 0, hides
its complexity, and exposes to the upper layer a pure high-
level Céu API (the Media type and the Scene and Player

organisms). Layer 2 consists of Céu-Media programs, i.e.,
Céu programs that use the Céu-Media extensions to build
multimedia applications. One could stop in Layer 2, but it is
possible to go further. Using Céu mechanisms we can com-
bine the basic abstractions of Céu with those of Céu-Media
into novel abstractions that are more suited to the descrip-
tion of particular scenarios. For instance, in Section 5 we
discuss the definition of an organism for constructing multi-
media slideshows. These Céu-Media extensions appear in
Layer 3, the uppermost layer in terms of level of abstraction.
From now on, whenever a code listing is presented, we will
indicate its position in this abstraction scale.

4.1 Implementation

The Media data type
The Media type is a Céu tagged data type. Each tag groups
properties related to one of the following media types: text,
image, audio, or video. A simplified version of the Céu code
that defines the Media type is presented in Listing 5.

1 data Media with
2 tag VIDEO with
3 var _char [255] uri; /* source uri */
4 var Region region; /* screen region */
5 var float volume; /* sound level */
6 end
7 or
8 tag IMAGE with
9 var _char [255] uri; /* source uri */

10 var Region region; /* screen region */
11 end
12 or
13 tag AUDIO with

2https://github.com/TeleMidia/LibPlay

14 var _char [255] uri; /* source uri */
15 var float volume; /* sound level */
16 end
17 or
18 tag TEXT with
19 var _char [255] text; /* text to render */
20 var uint color; /* text color */
21 var Region region; /* screen region */
22 end
23 end

Listing 5. The Media tagged data type (Layer 1).

A variable of type Media holds a set of properties but has
with no behavior associated to it. Although more verbose,
this design promotes reuse: different Players can render the
same Media instance.

The Scene organism
A Scene composes the output of multiple players into a syn-
chronized multimedia scene and, under the hood, is imple-
mented as a Céu organism. Listing 6 depicts the interface
of a Scene (lines 2–7) and its execution body (lines 8–19).

1 class Scene with
2 var Size? size; /* interface */
3 event mouse_click_event;
4 event mouse_move_event;
5 event key_event;
6 event error_event;
7 event (void) quit;
8 do /* body */
9 par/and do

10 loop do
11 evt = 〈get next event〉;
12 emit evt;
13 end
14 with
15 every FREQ ms do
16 _advance_time (FREQ * 1000000);
17 end
18 end
19 end

Listing 6. The Scene organism (Layer 1).

When variable of type Scene is defined, a new scene organ-
ism is created and its body starts immediately; it executes in
parallel with the surrounding code until the variable goes out
of scope. The Scene body performs to main tasks: (i) emits
scene-level events to the application, e.g., mouse clicks, key
presses and releases, errors, etc., and (ii) controls the scene
clock. Every Scene maintain an internal clock to which play-
ers are synchronized. This clock only advances through ex-
plicit calls to a Layer 0 function advance_time (line 16, in the
previous listing.) The inner workings of the scene clock and
its impact on the synchronization of the output presentation
are discussed in Section 4.2.

The Player organism
A Player renders a Media description on a Scene. Each Player

is an organism that when instantiated it starts and immedi-
ately presents its associated Media on the given Scene. Later
when there is no more content to be presented (i.e., the
player has drained all its media content), the player stops.

1 class Player with
2 var Scene &scene; /* interface */
3 var Media media;
4 function(Media , Scene&) => Player play;
5 function(char , int) => void set_property_int;
6 function(char) => int get_property_int;
7 event (void) start;
8 event (void) stop;
9 do /* body */

10 p = 〈allocate memory〉;

11 finalize
12 _start (p);
13 with
14 _stop (p);
15 end
16 await p;
17 end

Listing 7. The Player organism (Layer 1).

A simplified version of the Céu code that defines the
Player organism is depicted in Listing 7. The Player inter-
face consists of its data (associated media and scene, lines 2–
3), exposed functions (constructor plus property getters and
setters, lines 4–6), and events (start and stop, lines 7–8).
The player constructor (function play) takes a Media and a
Scene and returns a new Player, and the getters and setters
are used to get or set player properties, which control the au-
diovisual characteristics of the samples output by the player.
In Listing 7, only the functions for getting and setting in-
teger properties are shown, namely, get_property_int and
set_property_int; there are similar functions for the other
primitive data types.

Since starting the presentation of a Media might take a
non-negligible time—as it involves complex operations such
as resolving the content URI, opening the content file, de-
coding it, transforming the raw samples, etc.—the Player

uses an asynchronous start process: it loads the Level 0
player, requests an asynchronous start, waits for its com-
pletion, and emits a corresponding (Level 1) start event.
Similarly, whenever the Level 0 player notifies that its sam-
ples have been exhausted, the Player emits a corresponding
(Level 1) stop event. From the logical point of view, a Player

starts at the moment (logical time) its constructor has been
called—it uses the start event to notify the completion of
the asynchronous start. To synchronize the presentation,
the Scene considers the moment players have been created,
and not the moment their start event is emitted. Thus, for
timed media, it is possible that its initial content is not ren-
dered if the asynchronous start takes too long to complete.

In Céu, the organism body may have a finalize block
that executes a given piece of code whenever the organism
is killed or finishes its execution [14]. (Such blocks are sim-
ilar to destructor methods) In the previous listing, we use
a finalize block (lines 11–15) to guarantee that the Level 0
player is stopped whenever the corresponding Player vari-
able goes out of scope. And thus that not only the player is
stopped, but also that the allocated resources are properly
released.

4.2 Synchronization
Every Scene has an internal monotonic clock that starts

with 0 and only advances through explicit calls to a Layer 0
function advance_time(). Such calls are triggered by the
scene organism itself. For instance, in Listing 6, the scene
advances its clock every FREQ milliseconds (lines 15–17), where
FREQ is an internal constant, by the corresponding amount
of time. This call binds the logical time events of Céu with
the“physical”clock used to synchronize all players in a given
scene—or more precisely, to time-stamp the samples pro-
duced by these players.

To illustrate the consequence of this binding of logical and
physical time, consider program depicted in Listing 8. The
program creates a scene (lines 1–3), four muted videos (with
no audio tracks), vid1, vid2, vid3, (lines 4–7), and an audio
(line 8), audio. Then it waits for five seconds and creates four

players (lines 10–13), p1, p2, p3, and p4, initializing each with
one of the previous video media; these are started as soon
as they are created. Finally, it creates an anonymous player
(line 14) to play the audio media, starts it, and waits for its
end (stop event).

Following the synchronous semantics of Céu, the only in-
structions that actually take time in this program are the
await statements in lines 9 and 14, and the code that ad-
vances the scene clock (Listing 6, lines 15–17)—and they all
consume exactly the specified amount of logical time. This
means that the logical time does not pass while the players
are being created and started. Moreover, since the logical
clock drives the physical (scene) clock, this also means that
no samples are being time-stamp with distinct values dur-
ing this time. Note that without this “deterministic” control
over the scene clock, each Player would set a different times-
tamp value on the produced samples, as the physical time
actually passes while the program creates the players. And
this would happen even though they have been created in
the same reaction. Thus the program in Listing 8 produces
a presentation that renders the four videos and their respec-
tive audio in-sync.

1 var Scene s with
2 this.size = Size (1080, 720)
3 end
4 var Media vid1 = Media.VIDEO (" muted_video.ogv", ...);
5 var Media vid2 = Media.VIDEO (" muted_video.ogv", ...);
6 var Media vid3 = Media.VIDEO (" muted_video.ogv", ...);
7 var Media vid4 = Media.VIDEO (" muted_video.ogv", ...);
8 var Media audio = Media.AUDIO ("audio.ogg", 1.0);
9 await 5s;

10 var Player p1 = Player.play(vid1 , &s);
11 var Player p2 = Player.play(vid2 , &s);
12 var Player p3 = Player.play(vid3 , &s);
13 var Player p4 = Player.play(vid4 , &s);
14 await Player.play(audio , &s);

Listing 8. Binding logical and physical time (Layer 2).

5. SAMPLE APPLICATIONS
In this section, we discuss two sample applications writ-

ten in Céu-Media. These applications implement simple
uses cases that show that is not only feasible but also ad-
vantageous to use Céu-Media when programming common
multimedia synchronization scenarios. The first application
(Section 5.1) is an SRT player (in fact, a Céu organism)
that reads a SubRip text file and renders the corresponding
subtitles. The second application (Section 5.2) is a simple
multimedia slideshow that reuses the organism defined in
the first application. We conclude the section (Section 5.3)
with a discussion of how one could go further, from Layer 1
to Layer 2, and define an organism for slideshows which can
reused by other applications.

5.1 The SRT organism
Listing 9 depicts the partial Céu code for an SRT organ-

ism. When instantiated, the organism reads a SubRip text
file and, for each subtitle entry, obtains its start time, end
time, and text (lines 8–10), awaits for the amount of time
corresponding to its start time (line 11), and creates a Player

that renders the subtitle text for the duration of the entry.

1 class SRT with /* interface */
2 var Scene &scene;
3 var char[] &file;
4 var int y_offset;
5 do /* body */
6 var int now = 0;

7 loop entry in 〈subtitle entry in file〉 do
8 var int from = get_start_time (entry);
9 var int to = get_end_time (entry);

10 var char[]text = get_subtitle_text (entry);
11 await (from - now)ms;
12 watching (to - from)ms do
13 var Media text = Media.TEXT (text , 0xffff0000 ,
14 Region(0, y_offset , 800, 100));
15 await Player.play(text , &scene);
16 end
17 now = to;
18 end
19 end

Listing 9. The SRT organism (Layers 1–2).

The complete code of the SRT organism demands the use of
asynchronous I/O operations for reading the SRT file, along
with await statements for synchronizing the asynchronous
calls, as the use traditional blocking I/O would violate the
synchronous hypothesis. Thus a programmer writing this
organism needs to work on Layers 1 (asynchronous I/O)
and 2 (text rendering via Céu-Media). Finally, note that
this application cannot be directly implemented in NCL,
SMIL, or HTML without resorting to external scripts.

5.2 A multimedia slideshow
The slideshow we consider consists of three images. These

are presented in a loop (each for five seconds) while a pi-
ano soundtrack is played in background (also in a loop)
and synchronized subtitles are shown over the images. The
slideshow goes on indefinitely, terminating when there are
no more subtitles to be presented or any key is pressed by
the user. Listing 10 depicts the Céu-Media code of this
application.

1 var Scene s with this.size = Size (800, 585); end;
2 var Media piano =Media.AUDIO ("piano.ogg", .5);
3 var Media img1 = Media.IMAGE ("img1.jpg", ...);
4 var Media img2 =Media.IMAGE ("img2.jpg", ...);
5 var Media img3 =Media.IMAGE ("img3.jpg", ...);
6 par/or do
7 loop do await Player.play (piano , &s); end
8 with
9 loop do

10 watching 5s do await Player.play (img1 , &s); end
11 watching 5s do await Player.play (img2 , &s); end
12 watching 5s do await Player.play (img3 , &s); end
13 end
14 with
15 await SRT (&s, "subtitle.srt", ...);
16 with
17 await s.key_event;
18 end

Listing 10. A multimedia slideshow (Layer 2).

Listing 10 begins creating the scene and the necessary
media descriptions (lines 1–6). Then it starts four execu-
tion trails in a par/or composition—the composition, and
thus the program, ends when any these trails end. The first
trail (line 8) creates an anonymous player to render the back-
ground piano music in a loop (every time the player ends it is
recreated and restarts the music). The second trail (lines 10-
15) presents the three images (in corresponding players) in a
loop, each for five seconds. The third trail (line 17) creates
an SRT organism to present the subtitles and waits for it to
finish before terminating. Finally, the fourth trail (line 19)
simply awaits for a scene key_event before terminating.

The previous par/or composition (lines 7–20) and the se-
quence of watching statements (lines 11–14) resemble the par

and seq containers of SMIL. The watching blocks resemble
the SMIL’s dur attribute, while the counterpart of the pre-
vious loop statements is the repeatCount attribute of SMIL,

with its value set to indefinite. Similar analogies can be
made with NCL. But the crucial difference here is that the
semantics of Céu is unambiguous and guarantees that the
trails are, at any time, precisely and deterministically syn-
chronized. Furthermore, in pure NCL or SMIL it is simply
impossible to create abstractions comparable to the previous
SRT organism

5.3 The Slideshow organism
The Slideshow organism captures some of the behavior

of the previous slideshow application. The organism itself
consists of two sets of objects: one containing media de-
scriptions that should run in parallel, and another contain-
ing media descriptions that should be played in a sequence.
When the Slideshow organism is started it creates a player
for each description in these sets. Those in the parallel

set are played in parallel and those in the sequence set are
played in a loop, one after the other, each for a given amount
of time. The organism ends when any of the players that
are running in parallel terminate. Listing 11 depicts the
Céu-Media code of this organism.

1 class Slideshow with /* interface */
2 var Scene &scene;
3 pool MediaList [] ∥
4 pool MediaList [] &sequence;
5 var uint time;
6 var char quit;
7 do /* body */
8 par/or do
9 key = await s.key_event until (key == quit);

10 with
11 traverse list in && this.parallel do
12 watching *list do
13 if list:CONS then
14 spawn Player.play (list:CONS.media , &s);
15 traverse &&list:CONS.next;
16 end
17 end
18 end
19 loop do
20 traverse list in && this.sequence do
21 watching *list do
22 if list:CONS then
23 watching (time)s do
24 await Player.play (list:CONS.media , &s);
25 end
26 traverse &&list:CONS.next;
27 end
28 end
29 end
30 end
31 end
32 end

Listing 11. The Slideshow organism (Layer 2).

In Listing 11, the parallel and sequence sets are repre-
sented by the media lists (lines 3–4) in the organism inter-
face. The interface also has variables that determine target
scene (scene, line 2), the duration of each entry in the se-
quence set (time, line 5), and the specific key which causes
the organism to terminate (quit, line 6). The organism body
consists of two parallel trails in a par/or composition. The
first trail (line 9) simply waits for the given quit key before
terminating, while the second trail (lines 11–30) implements
the slideshow semantics, that is, traverses the media lists re-
cursively (via traverse statements) creating the players and
waiting for the appropriate events, e.g., time seconds before
stopping each player created lines 22–24.

Listing 12 depicts a Céu-Media program that uses the
previous Slideshow. The program simply creates the scene,
the media lists, and the organism.

1 var Scene scene with this.size = Size (800, 585); end;
2 pool MediaList [] parallel =
3 new MediaList.CONS (Media.AUDIO ("piano.ogg", .5),
4 MediaList.CONS (Media.IMAGE ("frame.png", ...),
5 MediaList.NIL ()));
6 pool MediaList [] sequence =
7 new MediaList.CONS (Media.IMAGE("img1.jpg", ...),
8 MediaList.CONS (Media.IMAGE("img2.jpg", ...),
9 MediaList.CONS (Media.IMAGE("img3.jpg", ...),

10 MediaList.NIL ()))));
11 do Slideshow with
12 this.scene = &scene;
13 this.parallel = ∥
14 this.sequence = &sequence;
15 this.time = 10;
16 this.quit = 'q ';
17 end;

Listing 12. A program that uses the Slideshow organism (Layer 2).

Alternatively, we can specify the previous program using
a Lua table, since Céu can be seamless integrated with Lua.
The Lua version is depicted in Listing 13. Both versions,
Listing 12 and 13, are equivalent, i.e., they produce exactly
the same resulting presentation. Here we chose Lua for mere
convenience. Any higher-level syntax could be used, pro-
vided that there is a corresponding Céu code to parse it.
Finally, note that this example illustrates that from a small
set of abstractions exposed by Céu-Media it is possible to
create higher-level constructs targeting nonspecialist users.
Such usage resemble the use of template languages such as
TAL [15] or XTemplate [7] in the domain of XML languages.

1 rect = {76 ,74 ,650 ,440}
2 SLIDESHOW = {
3 width = 800, height = 585,
4 background = {
5 {tag = ' audio ' , uri = ' piano.ogg ' , volume =.5},
6 {tag = ' image ' , uri = ' frame.png ' , rect ={0 ,0 ,800 ,585}} ,
7 },sequence = {
8 {tag = ' image ' , uri = ' img1.jpg ' , rect=rect},
9 {tag = ' image ' , uri = ' img2.jpg ' , rect=rect},

10 {tag = ' image ' , uri = ' img3.jpg ' , rect=rect},
11 },}

Listing 13. A Lua version of the slideshow program (Layer 3).

6. CONCLUSION
In this paper, we investigated the use of the synchronous

language Céu for programming multimedia applications, in
particular, those applications that can be described as a
set of synchronized media objects. The concrete result of
this investigation is Céu-Media, a library for multimedia
programming in Céu. The programming model and ab-
stractions offered by Céu-Media are similar to that of the
traditional high-level multimedia languages NCL and SMIL,
but avoids their inflexibility, ambiguity, and synchronization
problems. This is only possible because Céu-Media takes
full advantage of Céu features: its integration with C, its
abstraction mechanisms (tagged types and organisms), and
its semantics—which is unambiguous, deterministic, and al-
lows for a precise control of time. And because, in the im-
plementation of Céu-Media, we took care to ensure that
the properties of the semantics of Céu are reflected in the
output multimedia presentation.

On the theory side, this work is another evidence that the
synchronous approach might be an adequate solution to the
longstanding semantical problems of NCL and SMIL, and
possibly HTML. In fact, an approach to these problems, and
possible future work, is to investigate how Céu and Céu-
Media can be used to implement a NCL or SMIL player—

which would indirectly “solve” problem of ambiguity in their
specification.

Other future work include improving the current imple-
mentation of Céu-Media. For instance, in the current im-
plementation some rendering flaws may be noticed as the
skew between the presentation time and the physical time
increases (specially for sounds due their high sampling fre-
quency). We are investigating solutions to minimize this
problem, and to extend the implementation, by adding op-
erations to pause and seek in players, and by investigating
the problem of program fast-forwarding and rewinding. Fi-
nally, another possibility is extending the Céu-Media model
to deal with distributed applications, where communication
latency makes the synchronous hypothesis unfeasible.

REFERENCES
[1] ABNT NBR 15606-2. Digital Terrestrial TV — Data Coding

and Transmission Specification for Digital Broadcasting —
Part 2: Ginga-NCL for Fixed and Mobile Receivers: XML
Application Language for Application Coding. ABNT, São
Paulo, SP, Brazil, November 2007.

[2] X. Amatriain, P. Arumi, and D. Garcia. A framework for
efficient and rapid development of cross-platform audio ap-
plications. Multimedia Systems, 14(1):15–32, 2008.

[3] K. Barkati and P. Jouvelot. Synchronous programming in
audio processing: A lookup table oscillator case study. ACM
Computing Surveys, 46(2):24:1–24:35, December 2013.

[4] A. Benveniste and G. Berry. The Synchronous Approach to
Reactive and Real-Time Systems. Proceedings of the IEEE,
79(9):1270–1282, 1991.

[5] A. Benveniste, P. Caspi, S. A. Edwards, N. Halbwachs, P. Le
Guernic, and R. De Simone. The synchronous languages 12
years later. Proceedings of the IEEE, 91(1):64–83, 2003.

[6] G. Berry. The foundations of Esterel. In G. Plotkin, C. Stir-
ling, and M. Tofte, editors, Proof, Language, and Interac-
tion, pages 425–454. MIT Press, 2000.

[7] J. A. F. dos Santos and D. C. Muchaluat-Saade. XTemplate
3.0: spatio-temporal semantics and structure reuse for hy-
permedia compositions. Multimedia Tools and Applications,
61(3):645–673, jan 2011.

[8] G. F. Lima. A synchronous virtual machine for multimedia
presentations. PhD thesis, Department of Informatics, PUC-
Rio, Rio de Janeiro, RJ, Brazil, 2015.

[9] P. L. Guernic, J.-P. Talpin, and J.-C. L. Lann. Polychrony
for system design. Circuits, Systems, and Computers, 2003.

[10] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The
synchronous data flow programming language LUSTRE.
Proceedings of the IEEE, 79(9):1305–1320, September 1991.

[11] Y. Orlarey, D. Fober, and S. Letz. FAUST: An efficient func-
tional approach to DSP programming. In New Computa-
tional Paradigms for Computer Music. 2009.

[12] M. S. Puckette. The Theory and Technique of Electronic Mu-
sic. World Scientific Publishing Company, Singapore, 2007.

[13] F. Sant’ Anna, R. Ierusalimschy, and N. Rodriguez. Struc-
tured synchronous reactive programming with Céu. In Proc.
of the 14th International Conference on Modularity, pages
29–40, New York, New York, USA, 2015. ACM Press.

[14] F. Sant’Anna, N. Rodriguez, R. Ierusalimschy, O. Land-
siedel, and P. Tsigas. Safe System-Level Concurrency on
Resource-Constrained Nodes. In SenSys ’13, New York, New
York, USA, nov 2013. ACM Press.

[15] C. d. S. Soares Neto, L. F. G. Soares, and C. S. de Souza.
TAL—Template Authoring Language. Journal of the Brazil-
ian Computer Society, 18(3):185–199, sep 2012.

[16] W3C Recommendation 01 December 2008. Synchronized
Multimedia Integration Language (SMIL 3.0). World Wide
Web Consortium (W3C), December 2008.

[17] G. Wang and P. Cook. ChucK: A Programming Language
for On-the-fly, Real-time Audio Synthesis and Multimedia.
In Proc. of 12th ACM Multimedia, pages 812–815, 2004.

	Introduction
	CÉU in a nutshell
	Comparing CÉU to NCL and SMIL
	Blinking LEDs in NCL
	Blinking LEDs in SMIL
	Synchronous languages and multimedia

	CÉU-Media
	Implementation
	Synchronization

	Sample applications
	The SRT organism
	A multimedia slideshow
	The Slideshow organism

	Conclusion

