
LuaGravity, a Reactive Language Based on Implicit
Invocation

Francisco Sant’Anna1, Roberto Ierusalimschy1

1 Departamento de Informática, PUC-Rio
R. Marquês de São Vicente 225, Gávea,

Rio de Janeiro, 22453-900.

{fanna,roberto}@inf.puc-rio.br

Abstract. The reactive programming paradigm covers a wide range of appli-
cations, such as games and multimedia systems. Mainstream languages do not
offer proper support for reactive programming, lacking language-level primi-
tives that focus on synchronism and interactions within application parts.
We propose an imperative reactive language, called LuaGravity, based on un-
conventional implicit invocation mechanisms. LuaGravity allows dataflow pro-
gramming, sequential imperative execution, and deterministic use of shared-
memory. With this work, we intend to unite the essential features of reactive
languages while keeping a convenient imperative style of programming.

1. Introduction
In concurrent applications like games, program control is mostly guided by the continuous
interactions among application entities, which may be internal to the application, such as
game characters, monsters, and the scenario; and also external (or environmental), such
as the keyboard, the network, and also time. Such interactions have a reactive nature, that
is, they are defined by cause/effect rules: a triggered action in one entity causes a reaction
into another. As an example, a keyboard press causes a character movement, which in
turn may be sensed by a monster that starts chasing the character.

Games also have constraints on how they should be permanently synchronized
with the environment, and are examples of (soft) real-time systems. Being a real-time
system does not imply having critical or high-performance requirements. It implies, how-
ever, that operations not performed within a short bounded time are considered useless or
even wrong. For instance, consider the annoyance of a game character that does not move
immediately following user input, or animations running in a slow frame rate.

We define as reactive systems applications with real-time constraints that are also
subject to a high degree of interaction and dependency, not only with the environment,
but also among their concurrent entities. Examples of such systems are, besides games,
multimedia, windowing, and simulation systems.

Reactivity-aware languages fall in two classes, which we refer as dataflow and
imperative reactive languages. In dataflow reactivity, state and control flow is hid-
den from the programmer—programs are declarative descriptions of dependency among
data. Functional Reactive Programming [Wan and Hudak 2000, Elliott and Hudak 1997,
Cooper and Krishnamurthi 2006] is representative for this class of languages. In im-
perative reactivity, the programmer must specify the exact control flow of appli-
cations, which is mostly guided by reactivity primitives. The Esterel language

[Berry and Gonthier 1992] provides sequencing and parallel constructs, as well as means
to await the occurrence of external events.

A common approach for programming reactive systems using mainstream lan-
guages is to use event-driven techniques [Meyer 2004]. However, this approach is too
verbose, as the reactive logic demands the definition of large amounts of events and call-
backs. Even worse, sequential program flow is usually broken in several callbacks that
access the same data. The lack of a context in callbacks (i.e. local stack) turns the under-
standing and maintenance of source code a challenge [Adya et al. 2002].

Writing sequential code is a feature most programmers would not like to renounce
to, even when programming reactive systems. Asynchronous processes (i.e. threads) of-
fer sequential control flow, but are not under strict control of the environment, demanding
extra synchronization efforts. An effective alternative is to use synchronous control ab-
stractions like continuations or coroutines, which also offer sequential control flow. How-
ever, continuations and coroutines require the notion of cooperation, rather than reactivity,
between them. With cooperation, control transfer between continuations is explicit; with
reactivity, control transfer is implicit, based on dependency relationships.

The best world seems to reside in a language combining the reactivity and loose
coupling of implicit invocation techniques (such as event-driven programming), with the
sequential execution of continuations. Such language should, however, eliminate the ver-
bosity of implicit invocation, seamless integrating it with continuations.

Therefore, we propose LuaGravity, a reactive language built as a set of runtime ex-
tensions to the Lua language [Ierusalimschy 2006, Ierusalimschy et al. 1996] that offers
continuation-like control abstractions as execution units called reactors. Reactors may be
dynamically linked in cause/effect relations, so that one reactor automatically triggers its
dependencies on termination; they may also be suspended to wait for other reactors to ter-
minate. With LuaGravity, we intend to reconcile the features of imperative and dataflow
reactive languages built on top of a minimum set of reactivity primitives.

2. LuaGravity
The key concept of LuaGravity is its execution unit, known as reactor. Reactors are
comparable to callbacks of event-driven programming, holding the following similarities:

• Reactors run implicitly, always as consequence of a change in the environment.
This characteristic is determinant to define LuaGravity as a reactive language.
• Reactors follow the synchronous hypothesis [Potop-Butucaru et al. 2005], which

assumes that their execution is atomic and conceptually instantaneous.

However, reactors differ from callbacks in the following characteristics:

• Reactors are themselves events, and can be linked to each other so that a reactor
termination triggers its dependent reactors. This eliminates the need to explicitly
declare and post events, reducing this verbosity of event-driven programming.
• Reactors are allowed to suspend in the middle of their own execution (keeping

local state) to wait for other reactors to terminate. This feature permits sequential
execution for reactors, while keeping their reactive nature.

Besides standard Lua statements, a reactor can perform the following operations:

• Create new reactors.
• Start and stop reactors.
• Create and destroy links between reactors.
• Await other reactors.

function rA ()
val = ’a’

end
function rB ()

val = ’b’
end
function rC ()

val = ’c1’ -- sub-node (1)
AWAIT(rB)
val = ’c2’ -- sub-node (2)

end
LINK(rA, rC)

Figure 1. Introductory example with respective dependency graph.

Figure 1 shows an introductory example that presents the LINK and AWAIT prim-
itives, the main reactivity mechanisms of LuaGravity. We comment on the graph in the
figure further.

We define three reactors1 rA, rB, and rC, linking rA to rC. When rA executes
(say it reacts to a key press), it sets val to a. Just after that, rC is executed, due to the
link from rA, setting val to c1. Then, rC awaits the execution of rB, and the value of
val remains equal to c1 until rB is triggered. When rB is executed somewhere, it sets
val to b, and awakes rC on termination, changing val to c2.

The AWAIT call saves the continuation of the running reactor before suspending it,
keeping the local environment and point of suspension to be restored on resume. Reactors
are implemented as Lua coroutines [Moura et al. 2004].

2.1. The Reactive Scheduler

In LuaGravity, a program is a dynamic dependency graph of reactors waiting for external
changes to react. In the graph, nodes are reactors with dependency relations represented
by directed edges connecting them. The scheduling policy of reactors is determined only
by the dependency graph, leading to what we call a reactive scheduler.

Starting from an external stimulus, the scheduler traverses the graph running all
dependent reactors until it reaches “leaf” reactors. We call this process a full propagation
chain, which, in accordance to the synchronous hypothesis, takes an infinitesimal time to
complete. A full propagation chain is also our definition for an instant within the notion
of discrete time of reactive languages.

1We use Lua’s meta-mechanisms to create reactors on function declarations. For function names starting
with underscores, we fall back to conventional Lua functions.

The reactivity primitives are responsible for populating the dependency graph with
three kinds of edges:

Link edges: Created by LINK(X,Y) calls. The edge connects the reactor X (source
reactor) to Y (destiny reactor) so that when the source reactor terminates success-
fully, the destiny reactor is implicitly triggered.

Await edges: Created by AWAIT(X) calls. The edge connects X (reactor to await) to the
continuation of the reactor being suspended. Await edges are temporary, as the
scheduler removes them as soon as the suspended reactor is awakened.

Promise edges: Created by calls to promises. Promises are described in Section 2.2.

Figure 1 shows the dependency graph for the previous introductory example. The
sub-nodes 1 and 2 represent the code chunks of reactor rC separated by the call to
AWAIT.

2.1.1. Cycles & Glitches

A tight cycle [Cooper and Krishnamurthi 2004] happens when a reactor is re-executed
during the same propagation chain due to a dependency on itself. For instance, the state-
ment LINK(rA, rA) creates a cycle, given that, when rA executes, it will trigger itself
indefinitely.2 As a full propagation chain represents a time unit, it is conceptually wrong
to have a reactor executing infinitely in the very same instant.

As a workaround to break tight cycles, we provide the PAUSE
primitive (as adopted for the same purpose by other reactive lan-
guages [Cooper and Krishnamurthi 2006, Berry 2000]), which suspends the execution of
the running reactor for the current propagation cycle, scheduling the reactor to run in the
following instant.

A glitch is an unwanted situation when a reactor is re-executed from different
paths during a graph traversal (i.e. not depending on itself). Suppose the program and
respective graph of Figure 2. If the scheduler traverses the graph using depth first search
or breadth first search, rC will be possibly executed before rB and, consequently, before
the variable b is updated. This way, the variable c would evaluate to the sum of the
updated value of a with the not updated value of b. Only after rC is executed again, now
after the termination of rB, that the variable c would hold the correct value.

The solution applied to our scheduler is the same taken by FrTime for dataflow
expressions [Cooper and Krishnamurthi 2006]: the scheduler traverses the dependency
graph in topological order.

2.2. The SPAWN primitive
The SPAWN(X) call acts like a fork, instantaneously scheduling the reactor passed as
parameter and the continuation of the calling reactor to run concurrently. As the spawned
reactor may not terminate with a value immediately, the SPAWN call returns to the running
reactor a promise to that value (also known as a future). In LuaGravity, a promise is
a function that, when called, awaits the returning value of the correspondent spawned
reactor.

2We assume that rA is not a delayed reactor, that is, rA does not suspend before terminating.

function rA () a = random() end
function rB () b = random() end
function rC () c = a + b end
LINK(rA, rB)
LINK(rA, rC)
LINK(rB, rC)

Figure 2. Program subjected to glitches with respective dependency graph.

function rA ()
print ’a1’ -- (A1)
p = SPAWN(rB)
print ’a2’ -- (A2)
p()
print ’a3’ -- (A3)

end

function rB ()
print ’b1’ -- (B1)
AWAIT(rC)’
print ’b2’ -- (B2)

end

function rC ()
print ’c1’

end

Figure 3. Program using SPAWN with respective dependency graph.

The SPAWN primitive is an exception to LuaGravity’s reactive scheduling policy
through graph traversal, as it explicitly schedules the execution of the given reactor.3

The example in Figure 3 illustrates the use of SPAWN. The execution of reactor rA
prints ’a1’ and spawns reactor rB (chunk A1). The call to SPAWN immediately schedules
rB and the continuation of rA (chunk A2) to execute concurrently. The scheduler chooses
non-deterministically which one to execute first. When chunk A2 is executed, it prints
’a2’ and calls the promise for rB, creating a temporary promise edge from rB to the
last continuation of rA (chunk A3). When rB is spawned, it prints ’b1’ and awaits rC,
creating the temporary edge from rC to the continuation of rB (chunk B2). The execution
of rC awakes rB, which, in turn, awakes rA, and both temporary edges are destroyed.

2.3. Dataflow programming

Functional reactive programming (FRP) [Wan and Hudak 2000, Elliott and Hudak 1997,
Cooper and Krishnamurthi 2006] brought dataflow support to functional languages
through the concept of behaviors, which are data units that carry dependency among

3The reactive property of LuaGravity is not broken though, as a SPAWN caller is only executed as a
consequence of an external stimulus anyway.

themselves. For instance, if a and b are behaviors, the result of the expression a + b is
another behavior that is recalculated whenever a or b change.

Although LuaGravity does not provide behaviors, we can implement them on top
of the available primitives. The following example in LuaGravity is equivalent to the
reactive expression c=a+b.

a = 0 b = 0 c = 0
function A (v) function B (v) function C ()

if v == a then if v == b then new = a + b
return CANCEL return CANCEL if new == c then

end end return CANCEL
a = v b = v end
return v return v c = new

end end return new
end

LINK(A, C)
LINK(B, C)
A(1) --> c = 1
B(2) --> c = 3

The current values of variables a, b, and c are normally accessed through their
names. However, to set a and b, their respective reactors A and B must be called with the
value to be assigned. This way, the value of c is automatically updated due to the links
from A and B to C.

As a trivial optimization, if a reactor receives a new value equal to its variable
current value, the reactor returns with the predefined value CANCEL, not propagating
dependent reactors.

Undoubtedly, this implementation for reactive variables lacks syntactic sugar and
a form of encapsulation. In fact, in LuaGravity, global assignments create reactive vari-
ables that can be combined, resulting in reactive expressions.4 The above mechanics is
applied under the hoods for globals, as the following example illustrates:

a, b = 0, 0
c = a + b
a, b = 1, 2
print(c()) -- prints 3

To access the current value of a reactive variable, the syntax varName() is used,
as in print(c()) in the example.

The example also shows that the + operator was redefined to accept reactive vari-
ables as operands. In the context of functional reactive programming, this process is
known as operator/function lifting [Wan and Hudak 2000]. We also provide extra lifted
versions for Lua operators whose semantics cannot be redefined. Standard Lua functions
can be lifted through the L operator, as in l floor=L(math.floor).

Another useful feature of FRP is the integration (in the sense of calcu-
lus [Cooper and Krishnamurthi 2004]) of behaviors over the time, commonly used in ani-
mations, as we show in Section 3. LuaGravity provides the primitive Swith this purpose.5

4Conventional Lua variables may be created by using names starting with underscores.
5The letter S resembles the integral sign.

The following example defines the position p in terms of speed v:

p = _p0 + S(v)

2.4. Determinism with shared-memory

As Lua supports assignments, a situation where non-deterministic effects would appear
is when concurrent reactors share memory. Two reactors are considered to be running
concurrently if they both execute during the same propagation chain, but not as a conse-
quence of one another. Recall the SPAWN call in Figure 3, where rB and the continuation
of rA are scheduled to run concurrently.

In the following code, reactors rA and rB are spawned concurrently and they both
assign to the global variable a. The final value for a may be 1 or 2, depending on which
reactor executes last:

function rA (_v) _a = _v end
function rB (_v) _a = _v end
SPAWN(rA, 1)
SPAWN(rB, 2)

LuaGravity refuses this kind of concurrent access to variables, raising a non-
deterministic access error. During a full propagation chain, if a variable is written, it
cannot be read or written concurrently. At each propagation chain, we track access to
variables, holding the reactor and mode on each access. If concurrent reactors access the
same variable in incompatible modes (i.e. write vs. read or write vs. write), then the
scheduler raises an error. This analysis lead, of course, to a performance penalty, which
we are not concerned with at this moment.6

Some programs, however, are inherently non-deterministic. Suppose the access to
a system resource is controlled by a shared variable. It might happen that two or more
reactors try to access the resource concurrently. In this scenario non-determinism is ac-
ceptable and one of the reactors should proceed and acquire the resource. In LuaGravity,
variables whose names start with two underscores are allowed concurrent access. Use of
non-deterministic variables is unsafe and requires caution. Even so, comparing to shared
memory of multi-threading, we believe that our approach is less error-prone. First, the
programmer must explicitly turn on such unsafe mechanism, which is restricted to vari-
ables prefixed by two underscores. Second, mutual exclusion (i.e. mutexes) for protecting
critical sections of code is not needed, as every code chunk in a reactor is already atomic.

2.5. Organisms

Organisms are the LuaGravity’s counterparts to objects of object-oriented languages. Like
objects, organisms are categorized in classes, and are used to encapsulate data and oper-
ations into a single abstraction. We see organisms as a natural abstraction for reactive
applications. The main differences to objects are:

• Organisms expose reactive variables, instead of properties (or getters & setters).
• Organisms expose reactors, instead of methods.

6The concurrency analysis could be entirely static if we had a compiling phase in LuaGravity.

The following example creates an abstract class to represent “visible” organisms
we want to draw on screen:

org.class ’Visible’

function constructor (self)
self.x = nil
self.y = nil
self.width = nil
self.height = nil
self.visible = AND(self.x, self.y, self.width, self.height)

end

... -- other reactors definitions

Every reactor receives self as its first parameter, representing the organism being
manipulated.

In the example, the constructor creates instance reactive variables for Visible or-
ganisms: x, y, width, and height for their bounds, and a boolean visible to in-
dicate whether the organism is currently visible on screen. AND is the lifted version of
Lua’s and operator.

As the variable visible is defined in terms of other reactive variables, its value
always reflects whether all organism’s bounds are defined. In typical object-oriented lan-
guages, such behaviors would need to be written using accessor methods in order to keep
dependencies between them.

3. A complete example

To exemplify the style of programming fostered by LuaGravity, reconciling dataflow with
sequential reactive programming, we present a fully working game.7 In this game, the
player controls a ship in the screen. The ship is allowed to move in the four directions,
and shoot to destroy moving meteors. Each given shot decrements one point in the score.
Every time a shot hits a big meteor, the meteor is split in two smaller ones, and the player
gets 10 points. When a shot hits a small meteor, the meteor just disappears and the user
gets 15 points. If a meteor hits the ship, the game is over.

We start the program code by creating the score, and placing it on screen. We
use a reactive variable to hold the score, passing it to a Text organism (a subclass of
Visible shown in Section 2.5) that is added to the screen in the given position.

score = 0
screen:add(

Text {
r=255,g=0,b=0, -- color in RGB
text=score, -- text to display
x=10, -- position on screen
y=10,height=25,

})

7We provide source code and a video demonstration for the game at http://
thesynchronousblog.wordpress.com/video-demonstrations/rocks-game/.

Note that, when the variable score is changed somewhere in the program, the
visible organism is automatically updated.

The game exhibits a satellite (which is initially hidden) as a figurative element:
satellite = screen:add(

Image { ’imgs/satellite.gif’, -- source image
y = screen.height/3,
width = screen.width/10,
height = screen.height/10,

})

SPAWN(function ()
while true do

satellite.x = -satellite.width() -- puts it outside the screen
AWAIT(math.random(10)) -- awaits a random time
satellite.x = S(50) -- animates the satellite
AWAIT(GT(satellite.x, screen.width)) -- until it leaves

end
end)

Initially positioned outside the screen (-satellite.width()), the satellite
waits for a random number of seconds, when its x position is set to S(50), making it
move 50 pixels per second. The animation lasts until the satellite reaches the other side
of the screen (GT is the lifted greater-than operator), when the process restarts.

The ship is also an Image organism added to the screen similarly to the satellite.
We create several links to bind key presses to ship actions:
LINK(keyboard.SPACE.press, ship.shoot)
LINK(keyboard.UP.press, function ()

ship.y = ship.y() - 8
end)
LINK(keyboard.DOWN.press, ...) -- similar to ’UP’
LINK(keyboard.LEFT.press, ...) -- similar to ’UP’
LINK(keyboard.RIGHT.press, ...) -- similar to ’UP’

The reactor ship.shoot must spawn a new bullet every time it is called, as
several bullets can coexist:
function ship.shoot ()

SPAWN(function() -- spawns an anonymous reactor
score = score() - 1 -- subtracts one point

local bullet = Bullet { -- a subclass of "Rectangle"
-- r,g,b,width,height omitted
x = ship.x() + ship.width()/2, -- center of the ship
y = ship.y() - S(250), -- move upwards

}

screen:add(bullet) -- adds bullet to the screen
AWAIT(-- and awaits it hit or disappear

bullet.hit,
LT(bullet.y+bullet.height, 0) -- "Less Than" (<)

)
screen:remove(bullet) -- removes it from screen

end)
end

Every shot decrements one point in the score. The bullet is created, positioned
in the center of the ship, and animated upwards (-S(250)). Then, it is added to the
screen, until the bullet hits a meteor or reaches the top of screen (LT is the lifted less-than
operator), when it is removed from the screen. The reactor bullet.hit is triggered
whenever the bullet collides with a meteor (see further).

The game starts with five meteors. Every five seconds, a new meteor (faster than
the previous one) is created:

SPAWN(function ()
local _v = 50
for _i=1, 5 do

createMeteor{ speed=_v } -- five initial meteors
end
while true do

AWAIT(5)
createMeteor{ speed=_v } -- another each 5 seconds
_v = _v + 3

end
end)

The function createMeteor is similar to ship.shoot and is omitted.

Like the redrawing procedure, collision detection is external to the reactive sub-
system. The function collision is called every time two visible organisms collide.
The following code specifies what to do when a bullet hits a meteor:

function collision (vis1, vis2)
local meteor = ... -- find out if vis1 vs vis2 is a collision
local bullet = ... -- between a meteor and a bullet

if meteor and bullet then
if meteor._size == ’big’ then

score = score() + 10
createMeteor{_size=’small’, x=meteor.x(), y=meteor.y()}
createMeteor{_size=’small’, x=meteor.x(), y=meteor.y()}

else
score = score() + 15

end
meteor:hit()
bullet:hit()

end

... -- handle collisions between other organisms
end

Finally, we need to wait on a condition in order to avoid the application to termi-
nate:

AWAIT(keyboard.ESCAPE.press)

All the presented code chunks are placed sequentially in the source file. The
execution, until the last AWAIT statement, is linear, but conceptually instantaneous (as
no other AWAITs exist). This way, all spawned reactors representing animations and
“background activities” are started and run in parallel.

4. Evaluation & Related Work

The main purpose of LuaGravity is to reconcile imperative and dataflow reactivity. The
imperative and dataflow styles are not mutually exclusive, and we believe that some pro-
gramming patterns are better defined in one or another (or even hybrid) way. Our example
presented in the previous section reinforces this belief.

As an evidence, an analysis in the source code for our example shows that both
paradigms were used interchangeably during the development. We used six imperative
pairs SPAWN/AWAIT in the application, while we defined five reactive dataflow vari-
ables/expressions.

Another evidence is on how the animations in the game were implemented. We
use a common pattern found in games to model the satellite, bullet and meteor animations.
In this pattern, a given event in the game triggers the sequence of placing a graphical
object in screen, animating it until a condition is satisfied, and then removing it from
screen. The event might also trigger an optional side effect on the game as a whole.
Usually, the position of a graphical object depends on data, such as speed and time, and
is easily expressed with (stateless) dataflow expressions. On the other hand, the sequence
of placing the object on screen, waiting for specific conditions, and then restarting (or
removing) an animation is easily achieved with the pair SPAWN/AWAIT. We use this
mix between dataflow and imperative style to implement all the animations in the game.
Also, in our example, the action that fires the bullet animation has the side effect of
decrementing the score, which is expressed with a single line of code before starting
the animation.

The use of SPAWN improves the composability of LuaGravity applications, still
keeping their parts fully synchronized. Note in our example how the satellite behavior,
which does not directly interact with other entities in the application, is implemented with
a localized and self contained code.

Esterel [Berry and Gonthier 1992] was the first language to introduce synchronous
parallelized imperative statements. The semantics for LuaGravity’s SPAWN and AWAIT
were based on the parallel operator and the await primitive of Esterel. However, the use of
shared variables in Esterel is limited, as they can only be assigned in a single task. Also,
Esterel has no support for dataflow expressions.

Fran [Elliott and Hudak 1997] was the first implementation of what became
known as functional reactive programming (FRP) [Wan and Hudak 2000]. As expected
from a functional approach to reactive programming, Fran does not support imperative
reactivity with primitives such as SPAWN and AWAIT—control (execution order) and par-
allelism are abstracted away. Instead, Fran provides a rich set of operations on behaviors
and events, such as event mapping and merging, event predicates, and behavior switching
(the functional counterpart to AWAIT).

FrTime [Cooper and Krishnamurthi 2006, Cooper and Krishnamurthi 2004], an-
other FRP language, mostly inspired LuaGravity’s dataflow features. FrTime (and also
LuaGravity) allows to set the value of a behavior explicitly (the so called benign impuri-
ties [Cooper and Krishnamurthi 2004]), which is useful when combined with imperative
programming. In our example, we use this feature to explicitly subtract and add to the
score in different parts of the application (when firing a bullet and when hitting a meteor,

respectively). Recall that, in LuaGravity, access to shared variables (such as score) is
guaranteed to be deterministic. Again, as an FRP implementation, FrTime has not support
to imperative reactivity.

Ignatoff [Ignatoff et al. 2006] adapted a GUI toolkit to FrTime—he modelled
properties as FRP behaviors, and callbacks as stream events. We used the same ideas
(in a smaller scale) for the graphical widgets of LuaGravity—we modelled properties as
reactive variables, and callbacks as reactors. In our example, the reactive variable score
is passed to a Textwidget and assigned directly in other parts of the application. The pro-
grammer need not to notify widgets through accessor methods, automating the controller
role in the Model-View-Controller design pattern. Also, the use of reactors to represent
GUI inputs allows them to be used in LINK and AWAIT statements. For instance, the
game finishes when the call to AWAIT(KEY.ESCAPE.press) returns.

5. Conclusion and Future Work
We presented LuaGravity, a reactive language that we believe to fulfill the requirements
of a language driven by reactivity that allows code to be written sequentially.

The first requirement, reactivity, is achieved with implicit invocation mechanisms
for reactors. Reactors are connected in dependency relationships so that a terminating
reactor triggers the execution of its dependent reactors. Besides providing reactivity, our
approach decreases the verbosity found in event-driven programming, where events must
be explicitly declared and posted to provide reactivity. In LuaGravity, the termination of
reactors implicitly broadcast themselves, as if they were events. Another simplification,
compared to event-driven programming, is that events and their handlers are reified as the
single concept of reactors.

The second requirement, sequential execution, is achieved by allowing reactors
to suspend their own execution and wait for the termination of other reactors. When a
condition reactor terminates, the suspended reactor is resumed with local references and
point of execution restored.

We provide dataflow support for LuaGravity on top of the implicit invocation
mechanisms for reactors, as shown in Section 2.3. The use of reactive variables and
expressions, resembling the declarative programming style of FRP, can be used inter-
changeable with imperative sequential execution.

Besides the example presented in Section 3, we have developed other reactive
applications with LuaGravity.8

We highlight as the innovative features of LuaGravity what follows:

• Reactive programs as dependency graphs. Applications can be viewed as graphs,
in which nodes are reactors, and edges represent the dependency relationships
among them. From an external stimulus, a reactive scheduler traverses the graph,
executing dependent reactors.
• Unification of dataflow and imperative reactivity. LuaGravity follows the impera-

tive paradigm, with an style resembling that of Esterel. Furthermore, LuaGravity
does support dataflow on top the imperative primitives of the language.

8We provide source code and video demonstrations for these applications in the website
http://thesynchronousblog.wordpress.com/video-demonstrations/.

• Determinism with shared memory. We introduced an original reasoning for safe
and deterministic use of shared variables. With the discrete notion of time of
reactive languages, we can detect simultaneous access to shared variables in a
consistent way. Still, when non-determinism is inherent to the application, we
provide means to explicitly allow non-deterministic access to specific variables.

As future work, an important direction is going towards a more static model for
the language, also providing a formal definition for it. In Section 2.2, we showed how
a call to SPAWN, not predictable until it executes, circumvents the dependency graph
structure. Also, the detection of concurrent access to variables during runtime, described
in Section 2.4, could be avoided with static analysis.

Another possibility for future work is to allow concurrent reactors that do not
share variables to run with true parallelism. A challenge is how to control updates to the
dependency graph, which remains shared among reactors.

References

Adya, A., Howell, J., Theimer, M., Bolosky, W. J., and Douceur, J. R. (2002). Cooperative
task management without manual stack management. In ATEC ’02: Proceedings of
the General Track of the annual conference on USENIX Annual Technical Conference,
pages 289–302, Berkeley, CA, USA. USENIX Association.

Berry, G. (2000). The Esterel-V5 Language Primer. CMA and Inria, Sophia-Antipolis,
France. Version 5.10, Release 2.0.

Berry, G. and Gonthier, G. (1992). The ESTEREL synchronous programming language:
design, semantics, implementation. Science of Computer Programming, 19(2):87–152.

Cooper, G. and Krishnamurthi, S. (2004). Frtime: Functional reactive programming in
PLT Scheme. Technical Report CS-03-20, Brown University.

Cooper, G. H. and Krishnamurthi, S. (2006). Embedding dynamic dataflow in a call-
by-value language. In 15th European Symposium on Programming, pages 294–308.
LNCS 3924.

Elliott, C. and Hudak, P. (1997). Functional reactive animation. In ICFP ’97: Proceed-
ings of the 2nd ACM SIGPLAN International Conference on Functional Programming,
pages 263–273, New York, NY. ACM.

Ierusalimschy, R. (2006). Programming in Lua, Second Edition. Lua.Org.

Ierusalimschy, R., de Figueiredo, L. H., and Filho, W. C. (1996). Lua — an extensible
extension language. Software Practice and Experience, 26(6):635–652.

Ignatoff, D., Cooper, G. H., and Krishnamurthi, S. (2006). Crossing state lines: Adapting
object-oriented frameworks to functional reactive languages. In FLOPS 2006, pages
259–276. LNCS 3945.

Meyer, B. (2004). The Power of Abstraction, Reuse and Simplicity: An Object-Oriented
Library for Event-Driven Design. Springer Verlag. LNCS 2635.

Moura, A. L. D., Rodriguez, N., and Ierusalimschy, R. (2004). Coroutines in Lua. Journal
of Universal Computer Science, 10(7):910–925.

Potop-Butucaru, D., de Simone, R., and Talpin, J.-P. (2005). The synchronous hypothesis
and synchronous languages. In Zurawski, R., editor, Embedded Systems Handbook.
CRC Press.

Wan, Z. and Hudak, P. (2000). Functional reactive programming from first principles.
SIGPLAN Notices, 35(5):242–252. PLDI 2000.

