
Relating Declarative Hypermedia Objects and Imperative
Objects through the NCL Glue Language

Luiz Fernando Gomes Soares Marcelo Ferreira Moreno Francisco SantʼAnna
Pontifical Catholic University of Rio de Janeiro – PUC-Rio

Rua Marquês de São Vicente 225
22453-900 Rio de Janeiro, RJ, Brazil

+55 21 3527-1500 Ext: 3503

{lfgs, moreno, fanna}@inf.puc-rio.br

ABSTRACT
This paper focuses on the support provided by NCL (Nested
Context Language) to relate objects with imperative code content
and declarative hypermedia-objects (objects with declarative code
content specifying hypermedia documents). NCL is the
declarative language of the Brazilian Terrestrial Digital TV
System (SBTVD) supported by its middleware called Ginga. NCL
and Ginga are part of ISDB standards and also of ITU-T
Recommendations for IPTV services.

The main contribution of this paper is the seamless way NCL
integrates imperative and declarative language paradigms with no
intrusion, maintaining a clear limit between embedded objects,
independent of their coding content, and defining a behavior
model that avoids side effects from one paradigm use to another.

Categories and Subject Descriptors
I.7.2 [Document and Text Processing]: Document Preparation -
languages and systems, markup languages, multi/mixed media,
hypertext/hypermedia, standards.

D.3.2 [Programming Languages]: Language Classifications -
specialized application languages.

General Terms
Design, Languages, Standardization

Keywords
NCL, Glue language, Declarative and Imperative code content,
digital TV, intermedia synchronization, middleware.

1. INTRODUCTION
Declarative languages emphasize the high-level description of an
application rather than its decomposition into an algorithmic
implementation, as it is done when using imperative languages.

Such declarative descriptions are easier to be devised and
understood than imperative ones, which usually require
programming expertise. Some declarative languages defines
specific models to design applications targeted to specific
domains (a declarative DSL ─ Domain Specific Language)
offering a good balance between flexibility and simplicity, that is,
losing some expressiveness but gaining still more simplicity.

Since an application can address problems in different domains,
the use of declarative DSL objects (objects whose content are
declarative-code spans using a specific DSL) acting in
cooperation can be a good approach.

It is not unusual to see a declarative language embedding
constructions defined in another declarative language to solve
problems in different domains. This can be exemplified by the use
of SMIL [1] constructs embedded in HTML (the so called
HTML+SMIL) [2] or in SVG language [3], in order to provide
these languages with abstractions to specify spatial and temporal
synchronizations among their components. However, it is unusual
to see components written in different declarative languages
working in cooperation but maintaining their individuality, with a
minimum intrusion, assuring that operations executed in one
language environment do not affect the other environment.

Although it is unusual to see different declarative objects working
in cooperation, problems requiring this solution are common.
Take for example a digital TV application, written in a certain
declarative language and sent to receivers. Each receiver in its
turn could support an application written in other declarative
language, for example, a recommender system, which could be
integrated to the broadcasted application and then jointly sent to
another receiver, in a typical Social TV application. Today, there
are solutions addressing this typical example [11], but without a
real integration between language environments. Transformations
are performed on the received content in order to generate a
unique content.
Despite the high level abstraction nature of declarative domain
specific languages, it must be recognized that the richer
expressiveness of general purpose imperative languages cannot be
ignored, mainly for applications that produce many dynamic
contents, as a result of complex operations. Therefore, imperative
objects (objects whose content are imperative-code spans) may be
the right solution to the development of certain tasks.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
DocEng’09, September 16–18, 2009, Munich, Germany.
Copyright 2009 ACM 978-1-60558-575-8/09/09...$10.00.

222

©ACM, (2009). This is the author's version of the work. It is posted here by permission of ACM for

your personal use. Not for redistribution. The definitive version was published in Proceedings of the

Ninth ACM Symposium on Document Engineering, {VOL1, ISBN 978-1-60558-575-8, (09/2009)}

http://doi.acm.org/10.1145/1600193.1600243

Relating Declarative Hypermedia Objects and Imperative
Objects through the NCL Glue Language

Luiz Fernando Gomes Soares Marcelo Ferreira Moreno Francisco SantʼAnna
Pontifical Catholic University of Rio de Janeiro – PUC-Rio

Rua Marquês de São Vicente 225
22453-900 Rio de Janeiro, RJ, Brazil

+55 21 3527-1500 Ext: 3503

{lfgs, moreno, fanna}@inf.puc-rio.br

ABSTRACT
This paper focuses on the support provided by NCL (Nested
Context Language) to relate objects with imperative code content
and declarative hypermedia-objects (objects with declarative code
content specifying hypermedia documents). NCL is the
declarative language of the Brazilian Terrestrial Digital TV
System (SBTVD) supported by its middleware called Ginga. NCL
and Ginga are part of ISDB standards and also of ITU-T
Recommendations for IPTV services.

The main contribution of this paper is the seamless way NCL
integrates imperative and declarative language paradigms with no
intrusion, maintaining a clear limit between embedded objects,
independent of their coding content, and defining a behavior
model that avoids side effects from one paradigm use to another.

Categories and Subject Descriptors
I.7.2 [Document and Text Processing]: Document Preparation -
languages and systems, markup languages, multi/mixed media,
hypertext/hypermedia, standards.

D.3.2 [Programming Languages]: Language Classifications -
specialized application languages.

General Terms
Design, Languages, Standardization

Keywords
NCL, Glue language, Declarative and Imperative code content,
digital TV, intermedia synchronization, middleware.

1. INTRODUCTION
Declarative languages emphasize the high-level description of an
application rather than its decomposition into an algorithmic
implementation, as it is done when using imperative languages.

Such declarative descriptions are easier to be devised and
understood than imperative ones, which usually require
programming expertise. Some declarative languages defines
specific models to design applications targeted to specific
domains (a declarative DSL ─ Domain Specific Language)
offering a good balance between flexibility and simplicity, that is,
losing some expressiveness but gaining still more simplicity.

Since an application can address problems in different domains,
the use of declarative DSL objects (objects whose content are
declarative-code spans using a specific DSL) acting in
cooperation can be a good approach.

It is not unusual to see a declarative language embedding
constructions defined in another declarative language to solve
problems in different domains. This can be exemplified by the use
of SMIL [1] constructs embedded in HTML (the so called
HTML+SMIL) [2] or in SVG language [3], in order to provide
these languages with abstractions to specify spatial and temporal
synchronizations among their components. However, it is unusual
to see components written in different declarative languages
working in cooperation but maintaining their individuality, with a
minimum intrusion, assuring that operations executed in one
language environment do not affect the other environment.

Although it is unusual to see different declarative objects working
in cooperation, problems requiring this solution are common.
Take for example a digital TV application, written in a certain
declarative language and sent to receivers. Each receiver in its
turn could support an application written in other declarative
language, for example, a recommender system, which could be
integrated to the broadcasted application and then jointly sent to
another receiver, in a typical Social TV application. Today, there
are solutions addressing this typical example [11], but without a
real integration between language environments. Transformations
are performed on the received content in order to generate a
unique content.
Despite the high level abstraction nature of declarative domain
specific languages, it must be recognized that the richer
expressiveness of general purpose imperative languages cannot be
ignored, mainly for applications that produce many dynamic
contents, as a result of complex operations. Therefore, imperative
objects (objects whose content are imperative-code spans) may be
the right solution to the development of certain tasks.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
DocEng’09, September 16–18, 2009, Munich, Germany.
Copyright 2009 ACM 978-1-60558-575-8/09/09...$10.00.

222

It is usual to see declarative DSLs embedding constructions
defined in an imperative language to solve algorithmic problems,
specially embedding imperative scripting languages. This can be
exemplified by the use of ECMAScript with HTML [4] and BML
[5]. However, the current approaches are usually very intrusive.
The limit between the two programming paradigms is too flexible,
making difficult code detaching, reuse and their conception by
different programming teams. Moreover, the language’s
environments are so tightly coupled that unpredictable effects can
be caused by an environment into another.

Recognizing that the richer expressiveness of general purpose
imperative languages cannot be ignored, that the coexistence of
declarative code chunks specified in different domain specific
languages will be necessary in the digital TV domain, NCL
(Nested Context Language [6]) is defined as a glue language to
relate in time and space declarative objects, imperative objects
and perceptual media objects (video, audio, image, text, etc.).
Indeed, as a glue language, NCL does not restrict or prescribe its
object content types. In this sense, image objects (GIF, JPEG,
etc.), video objects (MPEG, MOV, etc.), audio objects (MP3,
WMA, etc.), text objects (TXT, PDF, etc.), imperative objects
(Xlet, Lua, etc.), declarative objects (XHTML, SMIL, SVG, etc.),
etc., are supported by the language. Which objects are supported
depends only on which object players (engines) are coupled to the
NCL formatter (player).

This paper focuses on how NCL provides support to relate
imperative and declarative hypermedia objects. Declarative
hypermedia objects are defined in the context of this paper as
objects whose content is a hypermedia document specified using
some declarative DSL). NCL is the declarative language of the
Brazilian Terrestrial Digital TV System (SBTVD) supported by
the SBTVD middleware called Ginga [7]. NCL and Ginga are part
of ISDB (International Standard for Digital Broadcasting)
standards (the previously known Japanese standard extended with
Brazilian improvements). NCL and Ginga-NCL are also ITU-T
H.761 Recommendation for IPTV services [9]. NCL and Ginga-
NCL were designed at the TeleMidia Lab at PUC-Rio. The work
has been coordinated by the authors of this paper that also chaired
the ITU-T H.761 and the Brazilian DTV Middleware Working
Group.

After presenting a motivation example of the NCL support to
relate imperative objects and declarative hypermedia objects in
the next section, this paper goes on briefly presenting some
related work in Section 3. Section 4 discusses how object
interfaces can be defined for all object types. Always using the
example of Section 2 as a background, Section 5 presents the life
cycle of media objects and how they can be related. Section 6 is
reserved to final remarks.

2. MOTIVATION EXAMPLE
In order to illustrate how NCL relates imperative objects and
declarative hypermedia objects, an example is detailed throughout
this paper. This motivation example is introduced in this section
also to illustrate the real need of different types of objects to work
in collaboration in a DTV application.

The example uses multiple exhibition devices but is very simple.
Consider the following application:

1. A film (a video animation) about a famous soccer player is
broadcasted to be exhibited in a primary device (a TV set, in
Figure 1).

2. During the video presentation, an advertisement about a soccer
shoes will be played in a set of secondary devices (iPhones in
Figure 1).
a) When the advertisement is ready to be presented, an icon
will appear in the TV set (right upper corner in Figure 1),
during a certain period of time, in order to notify the existence
of a secondary exhibition.
b) During the same period of time, a soccer shoes icon will
appear on secondary devices. If any viewer using a secondary
device wants to buy soccer shoes, it must select the icon. After
the selection the icon presentation will stop, an advertisement
video and an HTML form will appear on the secondary device
over a background picture. The selection also increments a
counter, which holds the number of purchases performed by all
viewers.
c) A time is established for the advertisement purchase. When
this time is over, the exhibition on secondary devices is
stopped and the total number of purchases carried out by all
viewers in this home network service is presented (in the TV
set).

Figure 1 – Multiple exhibition devices

In order to implement this application, NCL will be used as a glue
language for the following objects (called media-objects in NCL
jargon) received by broadcasting (the film) and datacasting (all
other objects and the NCL application itself), illustrated in Figure
2:
• The main video media object (the film);
• The icon (an image media object) that notifies the existence of

secondary exhibition);
• The declarative hypermedia object representing the

advertisement (NCLAdvert in Figure 2);
• The imperative object implementing the counter.
All these objects will be nested and related in the NCL
application. The declarative hypermedia object could be
implemented using any declarative language1. In order to illustrate
how NCL can nest other NCL application, NCLAdvert will be
implemented as another nested NCL application. This declarative
hypermedia object, in its turn, relates a soccer shoes icon, the
advertisement video, the background image and another
declarative hypermedia object: an HTML object. Note then that
we will have a declarative hypermedia object (NCLAdvert) also

1 The reference implementation of Ginga supports XHTML,

SMIL Tiny and NCL declarative hypermedia objects.

223

acting as a glue to relate other objects, including another
declarative hypermedia object (HTML).

Figure 2 – Structural view of the NCL parent application

3. RELATED WORK
The modularization approach has been used in several W3C
language recommendations. Modules are collections of
semantically-related XML elements, attributes, and attribute
values that represent a unit of functionality. Furthermore, a
module specification may include a set of integration
requirements, to which language profiles that include the module
shall comply. It is not unusual to see declarative language profiles
embedding modules defined by other declarative languages. As an
example, in order to include temporal synchronization in its
content, both HTML [2] and SVG [3] specific profiles include
SMIL [1] modules. Note that this kind of integration does not
define a clear limit between each language, since the elements and
attributes imported are viewed by the programmer as new
vocabulary added to the host language. In this solution only one
language profile is defined; only one language paradigm guides
the language functionality. In the case of the mentioned example,
synchronization based on compositions with temporal semantics
is the paradigm for declaratively specifying temporal
synchronization.

This common integration is also found in NCL. NCL’s Transition
module and Metainformation module have the same functionality
as SMIL homonyms, for example. However, NCL also allows
embedding components written in different declarative languages
working in cooperation but maintaining their individuality, with a
very clear limit between the languages’ paradigms. As an
example, a parent NCL application allows embedding SMIL
documents as one of its child media objects as well as other nested
child NCL documents. In NCL media objects, temporal
synchronization, for example, follows the event-driven paradigm
and is specified by using NCL’s link elements, while in SMIL
child media objects maintains their paradigm for specifying
temporal synchronization by using compositions with temporal
semantics. Thus, the best of both approaches can be taken.

Like NCL, SMIL does not restrict its supported media types. This
way, it is possible to have imperative and declarative content as
new media types. However, SMIL does not define a standard
general behavior for such media object players (engines), leaving
details to particular SMIL implementations.

Example of systems that require different declarative hypermedia
objects working in cooperation are not unusual. As

aforementioned, in DTV domain it is common to receive
applications written in a certain declarative language and to enrich
this application with other content (information) probably created
based on another declarative language. Today, there are solutions
addressing this typical example, but without a real integration
between language environments. In [11] the received content is
transformed and joined with the enrichment content generating
another application in the same language in which the
enrichments are based.

Content enrichments can be achieved by using NCL Editing
Commands [12]. Enrichments can be written in any desired
declarative or imperative language, and can be generated by many
users, which can collaborate in a wider social TV environment.
The recommender system of [10] is being extended to adopt this
approach.

As mentioned in Section 1, it is usual to see a declarative domain
specific language embedding constructions defined in an
imperative language to solve algorithmic problems. Three
requirements should guide this integration. Indeed, the same
requirements should also guide the integration between two
declarative languages:
1) The languages should be modified as little as possible;
2) The border line between the two programming paradigms
should be very well defined;
3) The relationship between the two language environments
should be orthogonal in the sense that operations in one
environment should not have unpredictable side effects in the
other environment.
Probably the most widespread integration between declarative and
imperative programming paradigms is by embedding
ECMAScript code into XHTML documents. The ECMAScript
language (through its dialect JavaScript) is an important
component in the Web 2.0. However, the approach used in the
integration between XHTML and ECMAScript is too intrusive,
going against the loose-coupling principles raised in the previous
paragraph:
1) Scripts are not self-contained XHTML entities exposing well
behaved interfaces to the document. They actually export globals
to be used throughout the document.
2) ECMAScript code spans are usually written inside
documents, or, even more intrusively, inside XHTML tags or
attributes.
3) ECMAScript has access and might change any part of the
DOM tree of an XHTML document.

The Ambulant SMIL Player [13] added support for DOM
mechanisms through the definition of “pseudo media objects”,
which contain imperative code chunks written in Python. As far as
authors know, this is the first implementation of a SMIL player
with support to imperative code spans embedded in SMIL
documents. As with HTML, the free access to the DOM tree by
scripts can compromise the whole document structure idealized at
creation time. Such flexibility may be desired for complex tasks,
but might be dangerous when used for everyday operations. The
use of DOM to integrate imperative and declarative code spans is
much more error-prone when dealing with documents that specify
advanced multimedia relationships, like spatiotemporal
relationships, since the document consistency can be lost after a
structural modification.

224

Until its version 2.1, SMIL does not support imperative constructs
in documents. In its version 3.0, through the State module [1],
SMIL provides more control in applications by allowing explicit
manipulation of variables and properties in a document. For
instance, the attribute expr of media objects may contain an
expression that avoids the playback of the object when evaluated
to false, as in the following statement, where the audio is played
only if the network connection is faster than 1Mbps:

Note however that this approach also mixes declarative and
imperative code, characterizing a relaxed border between the two
paradigms.

4. OBJECT INTERFACES
In NCL an interface shields the object content. No matter the
object type, its content can only be exposed through its interfaces.

There are two types of media-object interfaces represented by
NCL <area> and <property> elements.

4.1 Content Anchors
An <area> element defines a content anchor, that is, a subset of
the information units that compose the object’s content. What is
an information unit of a media object depends on its type.

For a “video/xxx” media object, information units can be frames,
or even more grainy, pixels in a frame. For an “audio/xxx” media
object, information units can be audio samples. For a “text/xxx”
media object, information units can be words, and so on.
However, what defines a content anchor for declarative
hypermedia-objects and imperative media-objects?

In an imperative media-object, imperative-code span may be
associated with an <area> element through its label attribute. In
this case the label value shall identify the code span (a function, a
method, etc.).

A declarative hypermedia-object is handled by the NCL parent
application as a set of temporal chains [15]. A temporal chain
corresponds to a sequence of events (occurrences in time),
initiated from the event that corresponds to the beginning of the
declarative media-object presentation. As there are unpredictable
events (events whose occurrence in time can only be determined
during the media object presentation), as for example viewer
interactions in a DTV application, the whole temporal chain can
only be determined when its last unpredictable event occurs.
Therefore, declarative media-object content cannot be determined
a priori for all cases.

Figure 3 presents the temporal chain of the NCLAdvert
declarative hypermedia-object introduced in Section 2. Note in the
figure that there will be only one chain, which starts with the
soccer shoes icon presentation. After starting, an unpredictable
event (the user selection) can occur, making the chain to continue
in the right table of Figure 3. Otherwise, it ends with the soccer
shoes icon presentation ending, at 6 seconds (shown in the left
table). It must be remarked that, albeit the declarative
hypermedia-object has just one chain in this example, there are
cases in which more than one chain can be defined. This will
happen, for example, when a declarative hypermedia-object has
more than one starting point.

Start, Presentation,
soccer shoes icon

0s Start, Selection, soccer
shoes icon

(0+X) s

 End, Presentation,
soccer shoes icon

(X+0)s

 Start, Presentation,
background image

(X+0)s

 Start, Presentation,
soccer shoes video
advert

(X+0)s

End, Presentation,
soccer shoes icon

6s Start, Presentation,
HTML form

(X+0)s

 End, Presentation,
soccer shoes video
advert

(X+13)s

 End, Presentation,
HTML form

(X+13)s

Figure 3 – NCLAdvert temporal chain

Although declarative hypermedia-object content cannot be
determined a priori for all cases, content anchors may be defined.
In NCL, sections in temporal chains may be associated with
declarative hypermedia-object’s child <area> elements using their
clip attributes. In this case, the clip value is a triple “(chainId,
beginOffset, endOffset)”. The chainId parameter identifies one of
the chains defined by the declarative hypermedia-object. The
beginOffset and endOffset parameters define the begin time and
the end time of the content anchor, with regards to the chain
beginning time. When a declarative hypermedia-object defines
just one temporal chain, like the example in Figure 3, the chainId
parameter may be omitted. The beginOffset and endOffset may
also be omitted, when they assume their default values: 0s and the
chain end time, respectively.
A declarative hypermedia-object’s content anchor can also refer to
any content anchor defined inside the declarative code itself. In
this case, the label attribute of the <area> element that defines the
content anchor has a value such that the declarative hypermedia-
object player is able to identify one of its internally defined
content anchors. Thus, note that a declarative hypermedia-object
can externalize content anchors defined inside its content to be
used in relationships defined by the NCL parent object in which
the declarative hypermedia-object is included.

Figure 4 presents content anchor definitions for child media
objects of the parent NCL application of Figure 2. In Figure 4,
media objects are defined by <media> elements. Content anchors
are defined by <area> elements. The “anchor1” is an example of a
video temporal anchor that starts 10 seconds after the beginning of
the film and ends 20 seconds later. The “anchor2” defines a Lua
function call identified by “show”. Note that “anchor3” defines a
chain identified by “interaction” in the declarative hypermedia-
object “NCLAdvert”. As the beginOffset and endOffset
parameters are omitted, they assume their default values: 0s and
the chain end time, respectively.

225

<body>
 <port id="entry" component="film"/>
 <media id="film" type="video/mpeg"
 src="../media/ginga.mp4"
 descriptor="videoDesc">
 <area id="anchor1" begin="10s" end="30s"/>
 </media>
 <media id="secIcon" src="../media/icon.png"
 descriptor="imageDesc"/>
 <media id="counter" src="counter.lua"
 descriptor="luaDesc">
 <property name="inc"/>
 <area id="anchor2" label="show"/>
 </media>
 <media id="NCLAdvert" type="application/x-ncl-
 ncl" src="../media/advert.ncl"
 descriptor="nclDesc">
 <area id="anchor3" clip="interaction"/>
 </media>
 <media id="globalVar"
 type="application/x-ginga-settings">
 <property name="service.currentKeyMaster"/>
 </media>
...
</body>

Figure 4 – Specification of <media> elements of the NCL
application

The declarative hypermedia-object player is in charge of
interpreting the semantics associated with the object’s content
anchors. As an example, for a declarative media-object with NCL
code, a temporal chain is identified by one of the NCL document
entry points, defined by <port> elements2, children of the
document’s <body> element. Figure 5 illustrates the <port
id=“interaction”…> element referenced by NCLAdvert’s
“anchor3” specified in Figure 4. Note that, as NCLAdvet defines
only one entry point (<port> element), “anchor3” defines its clip
attribute only as an example, since the unique entry point would
have been assumed by default.

<body>
 <port id="interaction" component="icon"/>
 <media id="icon" src="../media/icon.png"
 descriptor="iconDesc"/>
 <media id="background"
 src="../media/background.png"
 descriptor="backgroundDesc"/>
 <media id="shoes" src="../media/shoes.mp4"
 descriptor="shoesDesc"/>
 <media id="ptForm" src="../media/ptForm.htm"
 descriptor="formDesc"/>
…
</body>

Figure 5 – Specification of <media> elements of NCLAdvert
Usually, in declarative SMIL or SVG hypermedia objects it is not
necessary to define content anchor’s clip attribute, since only one
temporal chain is defined by these objects. For these objects,
anchors can be defined only if it is desired to start documents they
define from a time lag from its specified beginning time.

In HTML declarative media-object, a content-anchor may specify
in its label attribute a string that should be used by the media
player to identify a content region to start the presentation of an
HTML page.

2 A <port> element always map to a child component interface.

In declarative hypermedia objects and imperative media objects,
an <area> element may also be used just as an interface to be used
as conditions of NCL links to trigger actions on other objects, as
discussed in Section 5.

In NCL, every media object shall have an anchor with a region
representing its whole content. This anchor is called the whole
content anchor and it is declared by default in NCL documents.
Every time an NCL component is referred without specifying one
of its anchors, the whole content anchor is assumed, except for
imperative media-objects as explained in what follows.

In a declarative hypermedia-object, the whole content anchor has
a special meaning. It represents the presentation of any chain
defined by the hypermedia-object. Every time a declarative
hypermedia-object is started without specifying one of its content
anchors, the whole content anchor is assumed, as usual, meaning
that the presentation of every chain shall be started in parallel.
Other declarative hypermedia-player behaviors are discussed in
Section 5.1.

The whole content anchor has also a special meaning for
imperative media-object. It represents the execution of any code
span (function, methods, etc.) inside the imperative media-object.
Another content anchor is also defined by default in imperative
media-objects, called main content anchor. Every time an
imperative media-object is started without specifying one of its
content anchors or properties, the main content anchor is assumed
and, as a consequence, the code span associated to it. In all other
references to the imperative media-object without specifying one
of its content anchors or properties, the whole content anchor is
assumed.

4.2 Properties
Media objects (<media> elements) may have several embedded
properties. Examples of these properties can be found among
those that define media-object placements during a presentation,
presentation durations, and others that define additional
presentation characteristics: background, transparency, etc. Some
properties have their values defined by the NCL engine, while
others by application authors. However, in any case, when
properties are used in relationships (exemplified in Section 5),
they shall be explicitly declared in child <property> (interface)
elements of a <media> element, as shown in Figure 4.

A <property> element defines the name attribute, which indicates
the name of a property or property group, and an optional value
attribute, defining an initial value for the name property.
Properties defined in media objects acts like local variables,
except properties defined in a special media object of
type=“application/ncl-settings”, called settings object. This media
object does not have content but only variables with different
scope (global, channel, service, etc.). In Figure 4, the “globalVar”
media object defines the “service.currentKeyMaster” variable that
determines which media-object has the key navigation control in a
DTV service.

Declarative hypermedia objects may have <property> elements
used both to define usual presentation properties, and to
externalize properties defined inside the hypermedia-object.
Examples of the first group are usual properties to parameterize
the hypermedia-object player behavior, like left, top, soundLevel,
background, etc. In the second group are properties whose name
attribute has a value such that the declarative hypermedia-object
player is able to identify one of its internally defined properties.

226

As an example, for a declarative hypermedia-object with NCL
code (<media type=“application/x-ncl-NCL” …>) one of its
<porperty> elements may be refer to a <port> element, child of its
<body> element, through its name attribute (that must have the
<port>’s id as its value). In its turn, the <port> element may be
mapped to a <property> element defined by any object nested in
the declarative NCL hypermedia-object, includind its settings
object.

A <property> element defined in an imperative media-object may
be mapped to a code span (function, method, etc.) or to a code
attribute. In this case, the name attribute of the <property>
element shall be used to identify the imperative-code span or the
code attribute, respectively. When a <property> element is
mapped to a code span (function, method, etc.) through its name
attribute and values are assigned to the property, the code must be
executed by the imperative media-object player with the assigned
values interpreted as parameters passed to the code span. When a
<property> element is mapped to an imperative-code attribute and
values are assigned to the property, these values are reproduced in
the associated imperative-code attribute.

Figure 4 shows an example of a <property> element of an
imperative media object with Lua code (“counter”). This property
identifies an “inc” code span that, when called, increments a
counter.

In NCL, initial values may be assigned to properties when a
<media> element is instantiated by an NCL player. Each NCL
<media> element is associated with a <descriptor> element by its
descriptor attribute, as shown in Figures 4 and 5. A <descriptor>
element may have child <descriptorParam> elements, which are
used to initialize implicit and explicitly declared properties.

5. RELATING OBJECTS: THE NCL GLUE
In NCL, relationships among media-objects are event-driven.
They are defined by <link> elements that specify which events
participate in the relationship and which is the relation.

5.1 Events
Content anchors and properties define events. An event denotes
any occurrence in time with finite or infinitesimal duration [14],
as usual in DTV domain [8]. A presentation event is defined by
the presentation of a content anchor3. A selection event is defined
by the selection of a content anchor. An attribution event is
defined by the attribution of a value to a property.

Each event defines a state machine (see Figure 6) that must be
maintained by the NCL player, based on information reported by
every media object player.

A presentation event (associated with a media-object’s content
anchor) initializes in the sleeping state. At the beginning of the
exhibition (or execution in the case of imperative objects) of its
corresponding content anchor, the event goes to the occurring
state. If the exhibition/execution is temporarily suspended, the
event stays in the paused state, while this situation lasts. A

3 Presentation events may also be defined on NCL composite

objects (represented by <body>, <context>, or <switch>
elements of NCL [6]), representing the presentation of any
content anchors defined by any object inside the composite
object.

presentation event may change from occurring to sleeping as a
consequence of the natural end of the presentation/execution
duration, or due to an action that stops the event. When the
presentation/execution of an event is abruptly interrupted, through
an abort command, the event goes to the sleeping state. The
duration of an event is the time it remains in the occurring state.
This duration may be intrinsic to the media object, explicitly
specified by an author or derived from a relationship, as will be
discussed in the next section.

Figure 6 -Event state machine

It is important to remark that presentation events associated with
whole content anchors of declarative hypermedia-objects or
imperative media-objects have a different definition from other
media objects, and very similar to presentation events defined on
NCL composite objects. In these cases, a presentation event stays
in the occurring state while at least one of the object’s internal
content anchors is being presented. It is in the paused state if at
least one presentation event associated with one of the object’s
internal content anchors is in the paused state and all other
presentation events associated with other content anchors are in
the sleeping or paused state. Otherwise, the presentation event is
in the sleeping state.

A selection event initializes in the sleeping state. It stays in the
occurring state while the corresponding content anchor is being
selected.

Attribution events stay in the occurring state while the
corresponding property values are being modified.

If in an imperative media-object a start instruction is applied to a
<property> element that calls the execution of a code span, no
content anchor state is affected.

5.2 Relations and Relationships
In NCL it is possible to define constraint and causal relations. In
NCL DTV profile [6] [7] [9] only causal relations are allowed. In
causal relations, conditions defined on events must be satisfied in
order to trigger action on events. Relations are defined using
<connector> elements, as exemplified in Figure 7.

<connectorBase>
 <causalConnector id="onKeySelectionSet">
 <connectorParam name="var"/>
 <connectorParam name="keyCode"/>
 <simpleCondition role="onSelection"
 key="$keyCode" qualifier="or"/>
 <simpleAction role="set" value="$var"/>
 </causalConnector>
...
</connectorBase>

Figure 7 – Example of causal relations in NCL

227

In Figure 7, a causal relation is defined specifying that when a
remote control “key” (key="$keyCode") is selected
(role="onSelection"), a value (value="$var") must be
assigned (role="set"). Note in the example that both the key
and the value are parameters to be defined. Note also that a
relation does not identify which actors will play its roles. All these
definitions are determined by relationships using the relation.
Moreover, a role may be played by more than one actor, as
exemplified in Figure 7 by the role="onSelection" whose
corresponding condition will be considered satisfied if it is
performed by any actor (qualifier="or").

Connector bases may be defined outside the NCL document
specification (in another external document) and reused in
relationships defined in other NCL documents that refer to these
bases.

Relationships are defined by <link> elements and refer to
relations through <link>’s xconnector attributes, as shown in
Figure 8. The figure illustrates how media objects defined in
Figure 4 can be related. The first link illustrates how a declarative
hypermedia-object can be related with an imperative object, and
the second one how a video media-object is related with a
declarative hypermedia object and an imperative media-object.

<body>
...
 <link xconnector="onKeySelectionSet">
 <bind role="onSelection"
 component="NCLAdvert" interface="anchor3">
 <bindParam name="keyCode" value="RED"/>
 </bind>
 <bind role="set" component="counter"
 interface="inc">
 <bindParam name="var" value="1"/>
 </bind>
 </link>
 <link xconnector="onEndStopStart">
 <bind role="onEnd" component="film"
 interface="anchor1"/>
 <bind role="stop" component="secIcon"/>
 <bind role="stop" component="NCLAdvert"/>
 <bind role="start" component="counter"
 interface="anchor2">
 <bindParam name="var" value="END"/>
 </bind>
 </link>
...
</body>

Figure 8 – Example of relationships in NCL

The first link refers to the connector defined in Figure 7
(xconnector="onKeySelectionSet"). Actors for each
relation’s role are defined through child <bind> elements.

The first <bind> element associates the role="onSelection" to
a specific interface (interface="anchor3") of declarative
hypermedia-objects instantiated from the <media
id="NCLAdvert" interface="anchor3" ...>. This
declarative content anchor specifies the clip="interaction"
entry point (see Figure 4) that is mapped to the icon image (<port
id="interaction" component="icon"/>), as defined in
Figure 5. One instance of the declarative NCLAdvert media object
will be created for each secondary exhibition devices (iPhones in

Figure 1). This is specified by the NCLAdvert’s descriptor
(descriptor="nclDesc"), defined but not detailed in Figure 4.
Since the role="onSelection" is defined by the <connector>
element of Figure 7 with qualifier="or", any selection made
on the soccer shoes icon will trigger the action role
(role="set"). Moreover, the selection parameter key of Figure 7
is set to the RED key (<bindParam name="keyCode"
value="RED"/>), meaning that the selection must be made using
the RED remote control key.

Still in the first <link> element of Figure 7, the action triggered by
the selection is specified to be applied to the “counter” imperative
media-object (<bind role="set" component="counter"
interface="inc">) in its interface (a property) “inc”. As a
result, a Lua procedure will be called, to increment a Lua variable
named “counter”4.

The second link specifies that when the film’s “anchor1”
presentation ends (<bind role="onEnd" component="film"
interface="anchor1"/>), the presentation of the image that
indicates secondary content must be stopped (<bind
role="stop" component="secIcon"/>), all temporal chain
of all declarative hypermedia objects must stop (<bind
role="stop" component="NCLAdvert"/>) and the Lua
procedure to show the counter final value must be called (<bind
role="start" component="counter" interface=
"anchor2">).

Links defined in Figure 8 illustrate a one way communication
from media objects (video and declarative hypermedia objects) to
imperative objects. However, an imperative code may also
command the start, stop, pause or resume of its associated content
anchors through an API offered by the language [7]. These
transitions may be used as conditions of NCL links to trigger
actions on other objects of the same NCL document. Thus, a two-
way synchronization can be established between the imperative
code and the remainder of the NCL document.

5.3 Declarative Hypermedia Player and
Imperative Player Behaviors
Declarative hypermedia objects and imperative media-objects
have their life cycle controlled by the NCL application in which
they are embedded. This implies an execution model different
from when the declarative or imperative code runs under the total
control of its own engine.

As with all media object players, imperative media-object and
declarative hypermedia-object players must execute an
initialization procedure when instantiated. However, different
from other media players, imperative media-object initialization
code is specified by the object author. This initialization
procedure is executed only once, for each instance, and creates all
code spans and data that may be used during the imperative-object
execution. In particular, this procedure registers one (or more)
event handler for communication with the NCL player. Note that
at least the code span associated with the main content anchor,
defined in Section 3.1, shall be created during the initialization
procedure.

4 The Lua code for this example is presented in Section 5.3.

228

As an example, Figure 9 illustrates the Lua code of the <media
id=“counter”…> element defined in Figure 4.

1 local counter = 0
2 function handler (evt)
3 if evt.class == 'ncl' and
4 evt.type == 'attribution' and
5 evt.name == 'inc' then
6 counter = counter + evt.value
7 event.post {
8 class = 'ncl',
9 type = 'attribution',
10 name = 'inc',
11 action = 'stop',
12 value = counter,
13 }
14 elseif evt.class == 'ncl' and
15 evt.type == 'presentation' and
16 evt.label == 'show' then
17 canvas:attrColor('yellow')
18 canvas:attrFont('vera', 24, 'bold')
19 canvas:drawText (9,9,
20 'Number of purchases: '..counter)
21 canvas:flush()
22 end
23 end
24 event.register(handler)

Figure 9 – The Lua “counter” content
When started, the Lua imperative media-object begins its
initialization procedure shown in Figure 9, specified by the object
author. In line 1 the counter is set to “0”. Lines 2 to 23 contain the
specification of the function that will handle attribution and
presentation events coming from the NCL application (from links
defined in Figure 8). Line 24 registers this function, that is, it
leaves the media-object ready to receive events that will trigger
this handling function.

After its initialization, the execution of an imperative media-
object becomes event oriented in both directions. Any action
commanded by the NCL player reaches the registered event
handlers, and any NCL event state change notification is sent as
an event to the NCL player.

Every media content players shall control event state machines
associated with their events, reporting changes to their parent
NCL player. A declarative hypermedia-object shall be able to
reflect in its content anchors and properties behavior changes of
its temporal chains. As an example, the NCL player of the
NCLAdvert declarative hypermedia-object must inform its parent
NCL Player when the soccer shoes icon is selected. This is done
changing the event state machine associated with the “anchor3”
content anchor, defined in Figure 4. Changes on this event state
machine will then trigger actions defined by the first <link>
element of Figure 8, under control of the parent NCL player.

Different from other media-object players, an imperative media-
object player has not sufficient information to control by itself all
event state machines, and shall rely on the imperative application
content to command these controls. Thus an imperative media-
object author must also take care of this task. As an example,
when the attribution specified by the first <link> element of
Figure 8 occurs (<bind role="set" component="counter"

interface="inc">), the lua “counter” object handler function is
called, and line 6 is executed, incrementing the counter. Note
however that the <link> element only starts the attribution. Every
time the handler function is called it must signalize the end of the
attribution to the NCL formatter. This is an imperative media-
object task that must be programmed by the media-object author,
posting an end attribution event as specified in lines 7 to 13. As
another example, when the “anchor2” presentation specified by
the second <link> element of Figure 8 occurs (<bind
role="start" component="counter" interface=
"anchor2">), the handler function is called, and lines 17 to 21
are executed, showing the counter result.

5.3.1 Starting Presentation Events
The start instruction issued by an NCL player shall inform at least
the following parameters to a media-object player: the media
object to be controlled, its associated descriptor, a list of events
(defined by the <media> element’s <area> and <property> child
elements, and by the default content anchors) that need to be
monitored, and the presentation event that needs to be started.

If a media player receives a start instruction for an object already
being presented (paused or not), it shall ignore the instruction and
keep on controlling the ongoing presentation, except for
declarative hypermedia objects and imperative media objects.

If a declarative hypermedia player receives a start instruction for a
temporal chain already being presented (paused or not), it shall
ignore the instruction and keep on controlling the ongoing
presentation. However, if the start instruction is for a temporal
chain that is not being presented, the instruction must be executed
even if another temporal chain is being presented (paused or
occurring).

Similarly, if an imperative media-object player receives a start
instruction for an event associated with a content anchor and this
event is in the sleeping state, it shall start the execution of the
imperative code associated with the element, even though other
portion of the media-object’s imperative code is being in
execution (paused or not). However, if the event associated with
the target content anchor is in the occurring or paused state, the
start instruction shall be ignored by the imperative-code player
that keeps on controlling the ongoing execution.

As a consequence, different from what happens to other <media>
elements, a <simpleAction> element with an actionType attribute
equal to “stop”, “pause”, “resume” or ”abort” shall be bound
through a link to an imperative media object’s interface or a
declarative hypermedia-object’s interface, which shall not be
ignored when the action is applied. For other types of media-
object, a <simpleAction> element with an actionType attribute
equal to “stop”, “pause”, “resume” or ”abort” does not need to
identify an interface, and the action is applied to the content
anchor being presented (paused or not).

As aforementioned, every time a declarative hypermedia-object is
started without specifying one of its content anchors, the whole
content anchor is assumed, as usual, but meaning that the
presentation of every chain shall be started in parallel. As for
imperative media-objects, every time they are started without
specifying one of their content anchors or properties, the main
content anchor is assumed and, as a consequence, the code span
associated to it. In all other references to the imperative media-
object without specifying one of its content anchors or properties,
the whole content anchor is assumed.

229

In [7] a detailed behavior of media-objects presentation, selection
and attribution event state machines can be found.

6. FINAL REMARKS
NCL is a glue language that can add functionalities written in
another declarative or imperative language to an application.
Joining the NCL facility of running on multiple devices in a
cooperative environment, as that exemplified in Figure 1, together
with the NCL support for live editing commands [12] several
possibilities can be envisioned.

NCL editing commands allow including media objects and
relationships in an NCL application during runtime. A device that
is able to run an NCL player and other language engines can
embed objects (and thus applications) written in these supported
languages into NCL applications, even on-the-fly. So, it is
possible, for example, to embed an application written in another
language, for example a recommender system, into an NCL
application being received by datacasting and played on real time,
as is the case of DTV applications in agreement with the Brazilian
terrestrial DTV system [7], or in any IPTV system in conformance
with the ITU-T Recommendation H.761 for IPTV services [9].

The main contribution of this paper is the way NCL integrates
imperative and declarative language paradigms with no intrusion,
maintaining a clear limit between embedded objects, independent
of their coding content, and defining a behavior model that avoids
side effects from one paradigm use to another.

A future work is to go on exploring new applications that have
other language media-objects running on secondary devices.
Together with a SMIL group of CWI, we are planning some large
experiments with devices able to run SMIL applications, such as
recommender systems, and others.

Ginga-NCL open source implementation (the reference
implementation of Brazilian DTV standard NCL player) can be
obtained from http://www.softwarepublico.gov.br. Several
examples of NCL applications can be obtained from
http://club.ncl.org.br. All examples illustrated in this paper
compose a unique NCL application (Figure 1) that can also be
obtained from the last site.

7. ACKNOWLEDGMENTS
The authors would like to thank Marcio F. Moreno and Romualdo
R. Costa for their valuable comments and their hard work
implementation of all ideas here presented. This work has been
supported by CNPq, MCT and FINEP.

8. REFERENCES
[1] W3C World-Wide Web Consortium. 2008. Synchronized

Multimedia Integration Language – SMIL 3.0, W3C
Recommendation. http://www.w3.org/TR/2008/
REC-SMIL3-20081201/

[2] W3C World-Wide Web Consortium. 1998. Timed Interactive
Multimedia Extensions for HTML – HTML+TIME, W3C
Recommendation. http://www.w3.org/TR/1998/
NOTE-HTMLplusTIME-19980918

[3] W3C World-Wide Web Consortium. 2003. Scalable Vector
Graphics (SVG) 1.1 Specification, W3C Recommendation.
http://www.w3.org/TR/2003/REC-SVG11-20030114/

[4] ETSI European Telecommunication Standards Institute.
2006. ETSI TS 102 812 V1.2.2 Digital Video Broadcasting
“Digital Video Broadcasting (DVB); Multimedia Home
Platform (MHP) Specification 1.1.1”.

[5] ARIB Association of Radio Industries and Business. 2004.
ARIB Standard B-24 Data Coding and Transmission
Specifications for Digital Broadcasting, version 4.0, 2004.

[6] Soares L.F.G., Rodrigues R.F. 2006. Nested Context
Language 3.0 Part 8 – NCL Digital TV Profiles. Technical
Report. Departamento de Informática da PUC-Rio, MCC
35/06. http://www.ncl.org.br/documentos/NCL3.0-DTV.pdf.

[7] ABNT NBR Associação Brasileira de Normas Técnicas.
2007. Digital Terrestrial Television Standard 06: Data
Codification and Transmission Specifications for Digital
Broadcasting, Part 2 – GINGA-NCL: XML Application
Language for Application Coding.
http://www.abnt.org.br/imagens/Normalizacao_TV_Digital/
ABNTNBR15606-2_2007Ing_2008.pdf.

[8] ISO/IEC 13818-1, “Information technology — Generic
coding of moving pictures and associated audio information:
Systems”, 1996, ISO/IEC.

[9] ITU-T Recommendation H.761, 2009. Nested Context
Language (NCL) and Ginga-NCL for IPTV Services.
Geneva, April 2009.

[10] Cattelan, R. G., Teixeira, C., Goularte, R., and Pimentel, M.
D. 2008. Watch-and-comment as a paradigm toward
ubiquitous interactive video editing. ACM Trans. Multimedia
Comput. Commun. Appl. 4, 4 (Oct. 2008), 1-24. DOI=
http://doi.acm.org/10.1145/1412196.1412201

[11] Cesar, P. S., Bulterman D.C.A., Jansen J., 2006. An
Architecture for End-User TV Content Enrichment. Journal
of Virtual Reality and Broadcasting, Volume 3(2006), no. 9.

[12] Costa R.M.R., Moreno M.F., Rodrigues R.F., Soares L.F.G.
2006. Live Editing of Hypermedia Documents. In
Proceedings of ACM Symposium on Document Engineering
(Amsterdam, Netherlands, 2006). DocEng 2006.

[13] Bulterman D.C.A., Jansen J., Kleanthous K., Blom K.,
Benden D. 2004. AMBULANT: A Fast, Multi-Platform
Open Source SMIL Player. In Proceedings of ACM
International Conference on Multimedia (New York, USA,
2004).

[14] Pérez-Luque M.J., Little T.D.C. “A Temporal Reference
Framework for Multimedia Synchronization”, IEEE Journal
on Selected Areas in Communications, 14(1), January 1996.

[15] Soares L.F.G., Costa, R.M.R; Moreno,M.F. 2008. Graph-
Based Schedulers for Resource Management and
Presentation Control in a QoS Architecture for DTV
Applications. Technical Report. Departamento de
Informática da PUC-Rio, MCC 12/08.

230

