
1

Peer-to-Peer Permissionless Consensus via
Authoring Reputation

Francisco Sant’Anna Department of Computer Science, Rio de Janeiro State University

Abstract—Public Internet forums suffer from excess and abuse, such as SPAM and fake news. Centralized platforms employ filtering
and anti-abuse policies, but imply full trust from users. We propose a permissionless Sybil-resistant peer-to-peer protocol for content
sharing. Our main contribution is a reputation system that moderates content and, at the same time, delivers network consensus. We
can trace a parallel with Bitcoin: new posts create reputation (vs proof-of-work), likes and dislikes transfer reputation (vs transactions),
and aggregate reputation determines consensus (vs longest chain). The reputation mechanism depends exclusively on the human
authoring ability (proof-of-authoring), which is slow and scarce, thus suitable to establish consensus. As an application example, we
prototype a permissionless decentralized version control system that, based on consensus, resolves conflicts automatically.

Index Terms—Bitcoin, blockchains, CRDT, distributed consensus, peer-to-peer, publish-subscribe, reputation system, VCS

F

1 INTRODUCTION

CONTENT publishing in Internet forums and social me-
dia is increasingly more centralized in a few companies

(e.g. Facebook and Twitter) [1], [2], [3]. On the one hand,
these companies offer free storage, friendly user interfaces,
and robust access. On the other hand, they concentrate more
power than required to operate by collecting users’ data and
“algorithmizing” consumption. Peer-to-peer alternatives [4]
eliminate intermediaries, but strive to achieve consistency
while dealing with malicious users.

In an ideal Internet forum, all messages or posts (i)
reach all users, (ii) are delivered in a consistent order, and
(iii) are respectful and on topic. In a centralized system,
items (i) and (ii) are trivially achieved assuming availabil-
ity and delivery order in the service, while for item (iii),
users have to trust the service to moderate content. In
a decentralized setting, however, none of these demands
are easily accomplished. A common approach in gossiping
protocols is to proactively replicate and disseminate posts
among peers until they reach all users [4], [5]. However, this
approach does not guarantee consensus since posts can be
received in conflicting orders [6], [7]. Consensus is key to
eradicate Sybil attacks [8], which are the major threats to
decentralized applications in general: without consensus, it
is not possible, at the protocol level, to distinguish between
correct and malicious users in order to satisfy item (iii).

Consensus is notably challenging to the point that decen-
tralized protocols partially abdicate of it. On the one hand,
federated protocols [9] offer multi-user/single-node consensus,
in which multiple users can exchange messages consistenlty
within a single trusted server, but not globally across mul-
tiple servers. On the other hand, a protocol like Scuttle-
butt [10] offers single-user/multi-node consensus, in which a
single user has full authority over its own content across
machines, but multiple users cannot reach consensus even
in a local machine. Our goal is to provide multi-user/multi-
node consensus (just consensus, from now on) in the context
of decentralized content sharing.

Bitcoin [11] is the first permissionless protocol to resist
Sybils through consensus. Its key insight is to rely on a
scarce resource—the proof-of-work—to establish consensus.
The protocol is Sybil resistant because it is expensive to
write to its unique timeline (either via proof-of-work or
transaction fees). However, Bitcoin and cryptocurrencies
in general are not suitable for content sharing: (i) they
enforce a unique timeline to preserve value and immunity
to attacks; (ii) they lean towards concentration of power
due to scaling effects; and (iii) they impose an external
economic cost to use the protocol. These issues threaten
our original decentralization goals. In particular, a unique
timeline implies that all Internet content should be subject
to the same consensus rules, which neglects all subjectivity
that is inherent to social content. Another limitation of cryp-
tocurrencies is that it is not possible to revoke content in the
middle of the blockchain, which is inadmissible considering
illegal content (e.g., hate speech).

In this work, we adapt Bitcoin’s idea of a scarce resource
to reach consensus in the context of content sharing. Our
first contribution is to recognize the actual published con-
tents as the protocol scarce resources, since they require
human work. Work is manifested as new posts, which if
approved by others, reward authors with reputation tokens,
which are used to evaluate other posts with likes and
dislikes. With such proof-of-authoring mechanism, token gen-
eration is expensive, while verification is cheap and made by
multiple users. Due to decentralization, posts in a timeline
form a causal graph with only partial order, which we
promote to a total order based on the reputation of authors.
The consensus order is fundamental to detect conflicting
operations, such as likes with insufficient reputation (akin
to Bitcoin’s double spending). Our second contribution is to
allow that users create diversified forums of interest (instead
of a singleton blockchain), each counting as an independent
timeline with its own subjective consensus etiquette. Our
third contribution is to support content removal without
compromising the integrity of the decentralized blockchain.
Users have the power to revoke posts with dislikes, and

2

peers are forced to remove payloads, only forwarding as-
sociated metadata. We integrated the proposed consensus
algorithm into Freechains [12], a practical peer-to-peer con-
tent dissemination protocol that provides strong eventual
consistency [13], [14].

As an application example, we prototyped a permis-
sionless decentralized version control system (dVCS) that
relies on consensus to apply automatic merges. A dVCS
is relevant because (i) it is a collaborative application, (ii)
with commits that need evaluation from users, and (iii) with
merges that require human intervention, which we propose
to automate. Hence, as a forth contribution, we show how
the consensus mechanism can empower mostly conflict-free
replicated data types (quasi-CRDTs) when they do encounter
conflicting operations.

In summary, we propose (i) a consensus mechanism
based on proof-of-authoring, (ii) for independent user-
generated blockchains, (iii) which supports content removal,
and (iv) which can automate conflict resolution in quasi-
CRDTs. As a main limitation, the forum causal graphs are
ever growing data structures that carry considerable meta-
data overhead. The costs to store and validate posts increase
over time, which is a limitation of blockchains in general.
Nevertheless, to show the practicability of the protocol, we
simulated months of activity of a chat channel and years of
a newsgroup forum, both extracted from publicly available
archives.

The rest of the paper is organized as follows: In Section 2,
we introduce the basic functionalities of Freechains to create,
evaluate, and synchronize posts. In Section 3, we describe
the reputation and consensus mechanism applied to public
forums and evaluate its perfomance. In Section 4, we discuss
the correspondences with CRDTs, and prototype a simple
dVCS. In Section 5, we compare our system with publish-
subscribe protocols, federated applications, and fully peer-
to-peer systems. In Section 6, we conclude this work.

2 FREECHAINS

Freechains [12] is an unstructured peer-to-peer topic-based
publish-subscribe protocol, in which each topic or chain is
a replicated Merkle Directed Acyclic Graph [15] (just DAG,
from now on). The DAG represents the causal relationships
between the messages, whose cryptographic links ensure
persistence and self certification. Considering that the DAG
itself represents the state of the peers, the protocol ensures
strong eventual consistency [16], [5]. The operation of the
protocol is typical of publish-subscribe systems: an author
publishes a post to a chain, and subscribed users eventually
receive the message.

The goals of this section are twofold: (i) to depict chain
DAGs as the result of basic protocol operations; and (ii)
to illustrate how permissionless protocols inevitably require
some form of Sybil resistance to become practical.

Freechains supports multiple arrangements of public
and private communications, which are detailed in Table 1.
In this section, we operate a private group to describe the
basic behavior of chains without consensus. We use the
actual command-line tool provided by the protocol to guide
the discussion through concrete examples. At the end of
this section, we also exemplify a public identity chain for the

sake of completeness. In Section 3, we focus on the behavior
of public forums, which involves untrusted communication
between users and require the proposed reputation and
consensus mechanism.

All Freechains operations go through a daemon (akin to
Bitcoin’s full nodes) that validates posts, links the DAGs,
and communicates with other peers to synchronize the
graphs. The command that follows starts a daemon in the
background to serve further operations:

> freechains-daemon start ’/var/freechains/’ &

The actual chain operations use a separate client to com-
municate with the daemon. The next sequence of commands
(i) creates a shared key, (ii) joins a private group chain
(prefix $), and (iii) posts a message into the chain:

> freechains keys shared ’strong-password’ <- (i)
A6135D.. <-- returned shared key
> freechains ’$family’ join ’A6135D..’ <- (ii)
42209B.. <-- hash representing the chain
> freechains ’$family’ post ’Good morning!’ <- (iii)
1_EF5DE3.. <-- hash representing the post

A private chain requires that all participants use the
same shared key to join the group. A join only initializes the
DAG locally in the file system, and a post also only modifies
the local structure. No communication occurs at this point.
Figure 1.A depicts the state of the chain after the first post.
The genesis block with height 0 and hash 42209B.. depends
only on the arguments given to join. The next block with
height 1 and hash EF5DE3.. contains the posted message.

Freechains adheres to the local-first software princi-
ple [17], in which networked applications can work locally
while offline. Except for synchronization, all other opera-
tions in the system only affect the local replica. In particular,
joining a chain with the same arguments in another peer
results in the same genesis state, even if the peers have never
met before. Hence, before synchronizing, other peers have
to initialize the example chain with the same step (ii).

In Freechains, the operation to synchronize chain DAGs
is explicit, in pairs, and unidirectional. For instance, the
command recv asks the daemon in localhost to connect to
daemon in remote-ip to receive all missing blocks from there:

> freechains ’$family’ recv ’<remote-ip>’
1/1 <-- one block received from <remote-ip>

If applied in the new peer, the command above would
put it in the same state as the original peer in Figure 1.A.
The complementary command send would synchronize the
DAG in the other direction. Note that Freechains does not
synchronize peers automatically. There are no preconfigured
peers, no root servers, no peer discovery. All connections
happen through the send and recv commands which have
to specify the peers explicitly. In this sense, Freechains is
conceptually a pubsub on how users publish and consume
content, but it still requires extra network automation.

In order to query the state of the replica, the next
sequence of commands checks the hash(es) of the block(s)
at the head of the local DAG (the latest blocks), and then
reads the payload of the single head found:

> freechains ’$family’ heads
1_EF5DE3.. <-- hash of head block
> freechains ’$family’ payload ’1_EF5DE3..’
Good morning! <-- block payload

3

TABLE 1
The three types of chains and arrangements in Freechains.

Fig. 1. Three DAG configurations. (A) Single head pointing to genesis block. (B) Fork with heads pointing to genesis block. (C) Like pointing to
previous heads and also to its target.

The presented commands to join, post, synchronize,
and query the chains are sufficient to create decentralized
applications that publish and consume content.

Note that chains do not typically evolve to a simple
list of sequential posts, but instead become DAGs with
multiple heads. The main reason is that the network is
inherently concurrent and users are encouraged to work
locally. Hence, continuing with the example in Figure 1,
suppose that the new peer posted a message before the recv

above, when its local DAG was still in its genesis state. In
this case, as illustrated in Figure 1.B, the resulting graph
after synchronizing would now contain two blocks with
height 1. Note that forks in the DAG create ambiguity in
the order of messages, which is a fundamental obstacle to
reach consensus. In private chains, we could apply simple
methods, such as relying on the local source timestamps
of the blocks. However, in public forums, a malicious user
could modify his local time to manipulate the order of
messages.

To conclude the basic operations of chains, users can rate
posts with likes and dislikes, which can be consulted later:

> freechains ’$family’ like ’1_EF5DE3..’
2_BF3319.. <-- hash representing the like
> freechains ’$family’ reps ’1_EF5DE3..’
1 <-- post received 1 like

As illustrated in Figure 1.C, a like is a regular block with
an extra link to its target. Every new block points to the
previous heads, establishing a causal logical timeline in the
chain. For instance, the JSON that follows represents the
block 2_DDA222.. with the backs and extra like links:

{
"id": "2_DDA222..", // block hash id
"backs": ["1_EF5..","1_A22.."] // back links

"time": 1650722072223, // source timestamp
"data": "E95DBF.." // hash of the payload
"like": "1_EF5DE3.." // like link (optional)

}

As we discuss in the next section, like operations in
public forums have to be signed by users, and are at the
core of our proposed consensus algorithm.

For the sake of completeness, Freechains also supports
public identity chains (prefix @) with owners attached to
public/private keys:

> freechains keys pubpvt ’other-password’
EB172E.. 96700A.. <-- public and private keys
> freechains ’@EB172E..’ join
F4EE21.. <-- hash representing the chain
> freechains ’@EB172E..’ post ’This is Pelé’ \

--sign=’96700A..’
1_547A2D.. <-- hash representing the post

In the example, a public figure creates a key pair and
joins an identity chain attached to his public key. Every post
in the chain needs to be signed with his private key to be
accepted in the network.

Note that the basic operations of Freechains to (i) cre-
ate decentralized identities, (ii) publish content-addressable
data, (iii) maintain Merkle DAGs, and (iv) synchronize
peers are not new in the context of peer-to-peer protocols.
However, without extra restrictions, any number of users
at any number or peers might inadvertently or maliciously
post any kind of content and rate posts any number of times,
thus threatening the value of the protocol. As discussed
in the Introdution, Sybil resistance through consensus is a
key requirement to combat abuse. In the next section, we
propose a consensus mechanism to support public forums
in Freechains. Freechains is around 1500 LoC in Kotlin. The

4

TABLE 2
General reputation operations in public forums.

binary for the JVM is around 6MB in size and works in
Android and most desktop systems.

3 REPUTATION AND CONSENSUS MECHANISM

In the absence of moderation, permissionless peer-to-peer
public forums are impractical, mostly because of Sybils
abusing the system. For instance, it should take a few
seconds to generate thousands of fake identities and SPAM
millions of messages into the system. For this reason, we
propose a reputation system that works together with a
consensus algorithm to resist Sybil attacks.

Section 3.1 describes the overall reputation and con-
sensus mechanism, which can be applied to other systems
using DAGs to structure its messages. Section 3.2 describes
the concrete rules we implemented for public forums in
Freechains. Section 3.3 details the consensus and synchro-
nization algorithm. Section 3.4 simulates the behavior of
chains to evaluate the performance of the protocol.

3.1 Overall Design
In the proposed reputation system, users can spend to-
kens named reps to post and rate content in the forums:
a post initially penalizes authors until it consolidates and
counts positively; a like is a positive feedback that helps
subscribers to distinguish content amid excess; a dislike

is a negative feedback that revokes content when crossing
a threshold. Table 2 summarizes the reputation operations
and their goals. To prevent Sybils, users with no reps cannot
perform these operations, requiring a welcoming like from
any other user already in the system. The fact the likes only
transfer reputation (being zero-sum operations) eliminates
the incentives from malicious to invite Sybils into the sys-
tem. The only way to generate new reps is to post content
that other users approve, which demands non-trivial work
immune to automation.

Bitcoin employs proof-of-work to mitigate Sybil attacks.
However, CPU or other extrinsic resources are not evenly
distributed among humans, specially considering that most
communications now use battery-powered devices. Consid-
ering the context of public forums, we can take advantage
of the human authoring ability as an intrinsic resource
instead. Creating new content is hard and takes time, but
is comparatively easy to verify and rate. Therefore, in order
to impose scarcity, we determine that only content authoring
generates reps, while likes and dislikes just transfer reps
between users. Nevertheless, scarce operations are not yet
sufficient because they demand consensus to establish an
order in time across the network to prevent inconsistent
operations. As an example, consider a malicious author with

Fig. 2. (A) A public forum DAG with a common prefix and two branches.
(B) Total order between blocks of the DAG after consensus.

a single unit of reps posting new messages using multiple
peers at the same time. According to the Expense rule of
Table 2, only one of these messages should be accepted.
However, without consensus, it is not possible to globally
determine which message to accept, since each peer would
supposedly accept the first message it sees. Therefore, in
order to validate operations consistently, we need the same
message ordering across all peers in the network.

Our idea to stablish consensus is to favor DAG forks
with posts from users that constitute the majority of the
reputation in the network. These forks have more associated
work from active users and are analogous to longest chains
in Bitcoin. In technical terms, we can adapt a topologi-
cal sorting algorithm to favor reputation when deciding
between branches in the chain DAG. Going back to the
malicious user example, the simultaneous messages would
appear as forks in the forum DAG. Only the message in the
fork with more combined work would be accepted, while
all other Sybil messages would be rejected.

Figure 2.A illustrates the consensus criteria. A public
forum DAG has a common prefix with signed posts from
users a, b, and c. Let’s assume that within the prefix, users a
and b have contributed with better content and have more
reputation combined than c has alone (i.e., 8 + 5 > 3). After
the prefix, the forum forks in two branches: in branch-1,
only user c remains active and we see that new users x
and y (with no previous reputation in the common prefix)
generate a lot of new content; in branch-2, only users a and
b participate but with less activity. Nevertheless, branch-2
would be ordered first because, before the forking point, a
and b have more reputation than c, x, and y combined. User
c here might represent a malicious user trying to cultivate
fake identities x and y in separate of the network during
weeks to accumulate reps.

Figure 2.B indicates the resulting consensus order be-
tween blocks in the forum. All operations in branch-2

appear before any operation in branch-1. Note that the
consensus order exists only for accountability purposes, and
is a view of the primary DAG structure. At any point in
the consensus timeline, if an operation fails, all remaining
blocks in the offending branch are removed from the pri-
mary DAG. As an example, suppose that the last post by
a (in gray) is a dislike to user c. Then, it’s possible that the
last post by c (in red), now suppose with 0 reps, is rejected
together with all posts by y and x in sequence. Note that in

5

Fig. 3. Stable consensus freezes the order of blocks once they cross the
activity threshold. The remaining unstable order may still be affected by
incoming branches.

a Merkle DAG, it is not possible to remove only the block
with the failing operation, instead, we need to remove the
remaining branch completely, as if it never existed. Note
also that users in the branch with more reputation can react
to attacks even after the fact. For instance, users a and b can
pretend that they did not yet see branch-1 and post extra
dislikes to user c from branch-2 so that a further merge
removes all blocks of branch-1 from the DAG.

There are some other relevant considerations about forks
and merges: Peers that first received branches with less rep-
utation will need to reorder all blocks starting at the forking
point. This might involve removing content in the end-user
software. This behavior is similar to Bitcoin’s blockchain
reorganization, when a peer detects a new longest chain.
Likewise, peers that first saw branches with more reputa-
tion just need to put the other branch in sequence with
no reordering. This behavior is expected to happen in the
majority of the network. Unlike Bitcoin, forks are not only
permitted but encouraged due to the local-first software
principle. However, the longer a peer remains disconnected,
the more conflicting operations it may see, and the higher
are the chances of rejection when rejoining.

As a counterpoint to the consensus order in Figure 2.B,
maybe users a and b have abandoned the chain for months,
and thus branch-1 is actually legit. In this case, users a
and b might be the ones trying to take over the chain.
Yet another possibility is that both branches are legit but
became disconnected for a long period of time. In any case,
it is unacceptable that a very old remote branch affects
a long active local chain. For this reason, the consensus
algorithm includes an extra constraint that prevents long-
lasting local branches to merge, creating hard forks in the
network. A hard fork occurs when a local branch crosses
the predetermined and irreversible thresholds of 7 days or
100 posts of activity. In this case, regardless of the remote
branch reputation, the local branch takes priority and is
ordered first. This situation is analogous to a hard fork
in Bitcoin and the branches will never synchronize again.
More than simply numeric disputes, hard forks represent
social conflicts in which reconciling branches is no longer
possible. Figure 3 illustrates hard forks by distinguishing
stable consensus, which cannot be reordered, from unstable
consensus, which may still be affected by incoming branches.
The activity threshold counts backwards, from the latest
local block in the unstable consensus.

In summary, the rules to merge a branch from a remote
machine j into a branch from a local machine i are as
follows:

• i is ordered first if it crosses the activity threshold of

7 days or 100 posts, regardless of j.
• i or j is ordered first, whichever has more reputation

in the common prefix.
• otherwise, branches are ordered by an arbitrary crite-

ria, such as lexicographical order of the block hashes
immediately after the common prefix.

3.2 Public Forum Chains
We integrated the proposed reputation and consensus
mechanism in the public forums of Freechains to support
content moderation and mitigate abuse in the chains. Table 3
details the concrete rules we conceived, which are discussed
as follows. Authors have to sign their posts in order to
be accounted by the reputation system and operate in the
chains. The example that follows creates an identity whose
public key is assigned as the pioneer in a public chain
(prefix # in Table 1):

> freechains keys pubpvt ’pioneer-password’
4B56AD.. DA3B5F.. <-- public and private keys
> freechains ’#forum’ join ’4B56AD..’
10AE3E.. <-- hash representing the chain
> freechains ’#forum’ post --sign=’DA3B5F..’ \

’The purpose of this chain is...’
1_CC2184.. <-- hash representing the post

The join command in rule 1.a bootstraps a public chain,
assigning 30 reps equally distributed between an arbitrary
number of pioneers indicated through their public keys. The
pioneers shape the initial culture of the chain with the first
posts and likes, while they gradually transfer reps to other
authors, which also transfer to other authors, expanding the
community. The post command in sequence is signed by the
single pioneer (in this example) and indicates the purpose
of the chain for future users.

The most basic concern in public forums is to resist Sybils
abusing the chains. Fully peer-to-peer systems cannot rely
on logins or CAPTCHAs due to the lack of a central authority.
Viable alternatives include (i) building social trust graphs,
in which users already in the community vouch for new
users, or (ii) imposing explicit costs for new posts, such
as proof of work. We propose a mix between trust graphs
and economic costs. Rule 4.a imposes that authors require
at least 1 rep to post, effectively blocking Sybil actions. To
vouch for new users, rule 3.a allows an existing user to like
a newbie’s post to unblock it, but at the cost of 1 rep. This
cost prevents that malicious members unblock new users
indiscriminately, which would be a breach for Sybils. For
the same reason, rule 2 imposes a temporary cost of 1 rep
for each new post. Note that the pioneers rule 1.a solves
the chicken-and-egg problem imposed by rule 4.a: if new
authors start with no reps, but require reps to operate, it is
necessary that some authors have initial reps to boot the
chains.

In the next sequence of commands, a new user joins the
same public chain and posts a message, which is welcomed
with a like signed by the pioneer:

> freechains keys pubpvt ’newbie-password’
503AB5.. 41DDF1.. <-- public and private keys
> freechains ’#forum’ join ’4B56AD..’
10AE3E.. <-- same pioneer as before
> freechains ’#forum’ post ’Im a newbie...’ \

--sign=’41DDF1..’
2_C3A40F.. <-- blocked post

6

TABLE 3
Reputation rules for public forum chains in Freechains. The chosen constants (30 reps, 24h, etc) are arbitrary and target typical Internet forums

with moderate traffic. A future revision of the protocol could support them as chain parameters.

Fig. 4. The like approves the newbie message into the #forum DAG.

> freechains ’#forum’ like ’2_C3A40F..’ \
--sign=’DA3B5F..’

3_59F3E1.. <-- hash representing the like

Note that chains with the same name but different pio-
neers are incompatible because the hash of genesis blocks
also depend on the pioneers’ public keys.

Figure 4 illustrates the chain DAG up to the like oper-
ation. The pioneer starts with 30 reps (rule 1.a) and posts
the initial message. New posts penalize authors with -1 reps
during at most 12 hours (rule 2), which depends on the
activity succeeding (and including) the new post. The more
activity from reputed authors, the less time the discount
persists. In the example, since the post is from the pioneer
controlling all reps in the chain, the penalty falls immediately
and she remains with 30 reps. This mechanism limits the
excess of posts in chains dynamically. For instance, in slow
technical mailing lists, it is more expensive to post messages
in sequence. However, in chats with a lot of active users, the
penalty can decrease to zero quickly.

Back to Figure 4, a new user with 0 reps tried to post a
message (hash C3A40F..) and is blocked (rule 4.a), as the red
background highlights. But the pioneer liked the blocked
message, decreasing herself to 29 reps and increasing new
user to 1 rep (rule 3.a). Note that the newbie post is not
penalized (rule 2) because it is followed by the pioneer like,
which still controls all reps in the chain.

Note that with no additional rules to generate reps, the
initial 30 reps would constitute the whole “chain economy”
forever. For this reason, rule 1.b awards authors of new
posts with 1 rep, but only after 24 hours. This rule stimulates

content creation and grows the economy of chains. The 24-
hour period gives sufficient time for other users to judge the
post before awarding the author. It also regulates the growth
speed of the chain. In Figure 4, after 1 day, the pioneer
would now accumulate 30 reps and the new user 2 reps,
growing the economy in 2 reps as result of the two consoli-
dated posts. Note that rule 1.b awards at most one post of
each author at a time. Hence, new posts during the 24-hour
period will not award each of them with extra reps. Note
also that rule 4.b limits authors to at most 30 reps, which
provides incentives to spend likes and thus decentralize the
network.

Likes and dislikes (rules 3.a and 3.b) serve three pur-
poses in the chains: (i) welcoming new users, (ii) measuring
the quality of posts, and (iii) revoking abusive posts (SPAM,
fake news, illegal content, etc). The quality of posts is sub-
jective and is up to users to judge them with likes, dislikes,
or simply abstaining. This way, access to chains is permis-
sionless in the sense that the actual peers and identities
behind posts are not directly assessed by the protocol, but
instead by the other users in the system. The reputation of
a given post is the difference between its likes and dislikes,
which can be used in end-user software for filtering and
highlighting purposes. On the one hand, since reps are finite,
users need to ponder to avoid indiscriminate expenditure.
On the other hand, since reps are limited to at most 30 reps
per author (rule 4.b), users also have incentives to rate
content. Hence, these upper and lower limits work together
towards the quality of the chains. Note that a dislike shrinks
the chain economy since it removes reps from both the origin
and target. As detailed next, the actual contents of a post
may be revoked if it has at least 3 dislikes, and more dislikes
than likes (rule 3). However, considering that reps are scarce,
dislikes are encouraged to combat abusive behavior, but not
to eliminate divergences of opinion.

A post has three possible states: BLOCKED, ACCEPTED, or
REVOKED. Figure 5 specifies the transitions between states.
If the author has reputation, a new post is immediately

7

Fig. 5. State machine of posts: BLOCKED posts are not linked in the DAG.
ACCEPTED posts are linked and retransmitted. The payload of REVOKED
posts are not retransmitted.

ACCEPTED in the chain. Otherwise, it is BLOCKED and requires
a like from another user. Blocked posts are not considered
part of the chain DAG in the sense that new posts do not link
back to it. In addition, peers are not required to hold blocked
posts and neither retransmit them to other peers. However,
if blocked posts are not disseminated, new users will never
have the chance to be welcomed with a like. A reasonable
policy is to hold blocked posts in a temporary bag and
retransmit them for some visibility in the network. Rule 4.c

limits the size of posts to at most 128kB to prevent DDoS
attacks using gigantic blocked posts. Once accepted, a post
becomes part of the chain and can never be removed again,
since Merkle DAGs are immutable by design. However, if
the number of dislikes exceeds the threshold (rule 3), the
block becomes REVOKED and its payload is not retransmitted
to other peers. Note that a block hash does not depend
on its associated payload, but only on the payload hash.
Hence, it is safe to remove the payload as long as one
can prove its revoked state. Later, if the post receives new
likes, it means that the payload is still known somewhere
and peers can request it when synchronizing again. We
consider that revoking posts is fundamental in the context
of content publishing, and thus, an important contribution
of this work.

In summary, the operations and constraints in Table 3 to-
gether with the consensus rules of Figures 2 and 3 empower
Freechains with permissionless public forums.

3.3 The Consensus and Synchronization Algorithm

In order to validate publications consistently across the
network, the consensus algorithm needs to execute at the
core of the protocol, and at the time peers synchronize their
chain DAGs. From the perspective of a peer on the receiving
side, the overview of the consensus and synchronization
algorithm is as follows:

a) Consensus: Calculate the consensus order of blocks
considering the local DAG.

b) Synchronization: Receive the next missing block
respecting topological order.

c) Verification: Verify that the block is valid and add it
to the local DAG.

d) Repeat: Restart from step (a) until no blocks are
missing.

Step (a) is discussed and motivated in extent in the
previous sections. The actual algorithm is detailed further
and adapts topological sorting to favor branches with more
reputation.

Step (b) is very similar to a recent work on Byzantine
Causal Broadcast [18], which also synchronizes DAGs repre-
senting causal messages: (i) starting from the heads of the
DAGs; (ii) traverse each head backwards until a common
block is found; (iii) now traverse forward all missing blocks,
respecting topological order; (iv) each block represents an
iteration of Step (b). What distinguishes our algorithm is
that BLOCKED blocks are not synchronized, which mitigates
denial of service attacks with very long malicious branches.
We also limit the number of iterations on Step (b.ii) to ensure
that the algorithm terminates. If necessary, a remote peer
that is disconnected for too long can try older heads to adapt
to this constraint.

Step (c) verifies if the next missing block found in Step
(b) can be added to the local DAG considering the consensus
order found in Step (a). It verifies the following properties:
(i) Merkle DAG structure is consistent (e.g., block hash and
back pointers); (ii) Back pointers are not in BLOCKED state;
(iii) Author signing the block has enough reputation. In
case of success, the block is added to the DAG and the
next iteration of the consensus algorithm already considers
it. Otherwise, the block is marked as BLOCKED, and the
remaining branch is ignored in Step (b.iii).

The topological sorting for the Consensus Step (a) is an
adaptation of Kahn’s algorithm [19]:

a) The set S of all blocks in the DAG with no incoming
edges starts with the chain genesis.

b) Removes from S the block B in the branch with
more reputation (Figure 2) and adds it to the end
of the consensus list L. (This is the only step that
differs from Kahn’s algorithm, which would take
any block from S.)

c) Adds to S all blocks directly in front of B, excluding
those reachable from any node still in S.

d) When S is empty, the list L holds the consensus
order.

Step (b) requires to find the maximum value in set S ac-
cording to the reputation criteria. The comparison function
needs to find the non-common authors in the suffix of
the two branches in order to compare the sum of their
reputations. For this reason, the algorithm also needs to
track negative, neutral, and positive blocks according to
Table 3. We take advantage of the hard fork rule that freezes
the consensus list L when crossing the activity threshold
(stable consensus in Figure 3). We use it as a checkpoint to
cache the reputations, which limits the input size to a short
fixed size that does not depend on arbitrary chain sizes.

Currently, we hold the DAG structure directly in the file
system with no database support. Each chain uses a separate
directory, and each block uses two separate files: a JSON for
the metadata and a payload exactly as posted. We save the
cache and current consensus order in an index file. We build
the DAG by traversing the chain directory.

8

3.4 Experiments

In this section, we perform experiments to evaluate the
performance and practicability of the protocol. As detailed
further, we evaluate the following parameters: (a) metadata
overhead, (b) consensus runtime, (c) graph forks, and (d)
blocked messages.

We simulate the behavior of two publicly available fo-
rums as if they were using Freechains: a chat channel from
the Wikimedia Foundation1, and the comp.compilers news-
group2. Chats and newsgroups represent typical public fo-
rums with faster interactions with shorter payloads (chats),
and slower interactions with larger payloads (newsgroups).
We only simulate the first 10.000 messages of the forums,
which represent 3 months of activity in the chat and 9 years
in the newsgroup.

A simulation spawns N peers, each joining the same
chain with the same arguments. For each message in the
original forum, we (i) set the timestamp of all peers to match
the date, (ii) create a pair of keys if the author is new, (iii)
post the message from a random peer in N , (iv) like the
post if the author has no reputation, and (v) synchronize the
chain with M random peers. Since all messages are part of
the original archive, we always perform step (iv) to unblock
messages from newbies. Evaluation parameter (d) counts
extra likes to unblock existing users, which could signal
excessive bookkeeping in the chain. Step (v) will inevitably
create forks in the chain for any M<N, which is accounted by
evaluation parameter (c).

For the newsgroup, we use N=15 and M=5, which rep-
resents a larger number of peers with few interconnections
to stress the local-first nature of the protocol. For the chat,
we use N=5 and M=3, which represents a smaller number
of peers with more interconnections. We executed each
simulation 4 times in a conventional desktop PC (i7 CPU,
8GB RAM, 512GB SSD). Since the variations were negligible,
we always discuss the median measures.

Evaluation item (a) measures the protocol overhead due
to blockchain metadata, which consists of a timestamp,
author signature, and hashes (block id, payload, backlinks,
and likes). The original chat archive is 800kB in size, or
80B for each message, which includes a timestamp, an
username, and the actual payload. The simulated chat chain
is 8MB in size, which indicates a 10x overhead. The original
newsgroup is 30MB in size, or 3kB for each message, which
includes a timestamp, a sender, a subject, and the actual
payload (typically much longer). The simulated newsgroup
chain is 42MB in size, which indicates a 50% overhead. It
is clear that the metatada overhead is not negligible, spe-
cially for short chat messages, but decreases as the payload
increases.

Item (b) evaluates the consensus step depicted in Sec-
tion 3.3. We measured the time to sort blocks in a local DAG
both for the first time (without any caches), and incremen-
tally (from stable consensus caches). For the chat chain, it
takes 125s and 50ms for the initial and incremental sorts
respectively, while for the newsgroup chain, it takes 100s
and 70ms. The incremental sort is limited to 7 days or 100
posts, regardless of the size of the chain, which conveniently

1. Chat: https://archive.org/download/WikimediaIrcLogs/
2. Newsgroup: https://archive.org/download/usenet-comp

settles an upper bound on the input size of the consensus
algorithm. Given that we use plain JSON files in the file
system, we consider an incremental consensus under 100ms
to be a practical upper bound.

Item (c) evaluates the number of forks in chain DAGs,
which indicates the level of asynchrony between peers fol-
lowing the local-first principle (supposedly). We calculate
the ratio of forks over the total number of messages, e.g., a
DAG with 100 messages and 10 forks has a ratio of 10%.
We found a ratio of 18% for the chat and 14% for the
newsgroup, which confirms that the simulation achieves a
reasonable level of asynchrony.

Item (d) evaluates how much bookkeeping is required
to sustain active users in the forums. Even though the
newbie rule 4.a in Table 3 is key to combat Sybils, ideally it
should not deny access to active users with low reputation
recurrently. The evaluation counts the number of blocked
messages requiring extra likes after the welcoming likes
(which are disconsidered) and calculates the ratio over the
total number of messages in the chain. As an example,
if 10 users posted 110 messages requiring 20 likes, we
discount the 10 initial messages and welcoming likes and
find a ratio of 10% ((20-10)/(110-10)). For the chat with
80 users, we found a ratio of 3.7%. For the newsgroup
with 5000 users, we found a ratio of 3.5%. Considering
that users were not aware of the reputation rules, the low
ratios indicate that their ”natural” posting behavior matches
the rules constraints. We assume that users would use the
revoke mechanism to combat abusive content, having no
further effects on our evaluation.

4 CORRESPONDENCES WITH CRDTS

Conflict-free replicated data types (CRDTs) [13] serve as a
robust foundation to model concurrent updates in collabo-
rative local-first applications [17]. However, CRDTs are not
a panacea and often require human intervention to solve
specific conflicts (quasi-CRDTs), such as manual merges in
version control systems (VCSs). Our observation is that,
since the proposed consensus algorithm already relies on
human interactions, we can use it to resolve conflicts auto-
matically.

We propose a three-layered CRDT scheme to build de-
centralized collaborative applications: state-based CRDTs at
transport layer (CvRDTs), operation-based CRDTs at ap-
plication layer (CmRDTs), and quasi-CRDTs with arbitrary
operations after consensus is applied.

At the transport layer, Merkle DAG chains are trivial
CvRDTs because they converge to the same state on syn-
chronization [20]. At the application layer, however, DAGs
loose this property because branches might be processed
in different orders across peers, resulting in incompati-
ble states. An interesting approach is to require blocks to
represent commutative operations, thus resulting in Cm-
RDTs [20]. CmRDTs have the advantage to store only small
updates that are sufficient to reconstruct any version of the
data. At the third layer, the consensus algorithm transforms
a chain DAG into a totally-ordered set, which supports
quasi-CRDTs with non-commutative operations. Note that
even full-CRDTs can benefit from consensus, since they

9

often encounter corner cases that require arbitrary choices
(e.g., aggregating updates or ressurecting data [21]).

Next, we illustrate this three-layered CRDT scheme
through an example of a simple permissionless decentral-
ized VCS (dVCS) implemented on top of public chains.

4.1 A dVCS with Automatic Merges

We built a simple dVCS with the functionalities (and associ-
ated Freechains operations) as follows:

• initialize a repository (join)
• commit local changes to repository (post)
• checkout repository changes to local (consensus/get)
• synchronize with remote peer (send/recv)
• rate and revoke commits (like/dislike)

The system relies on public forum chains, which means that
repositories are permissionless and adhere to the proposed
reputation and consensus mechanism. The main innova-
tions in this system are that (i) users can rate commits to
reject them, and (ii) checkout operations resolve conflicts
automatically based on consensus order.

As a concrete example, we model a Wiki article as a chain
behaving as a VCS holding its full edition history. To model
a complete Wiki platform, we assume that an article could
refer to other articles using hyperlinks to other chains.

Most VCS operations, except commit and checkout, map
directly to single Freechains commands. For instance, to
create a repository, we simply join a public chain with the
name of the file we want to track. In the commands that
follow, we create a repository with multiple pioneers, and
then edit and commit the file twice:

> freechains ’#p2p.md’ join A2885F.. 2B9C32..
2F11BF..
> echo "P2p networking is..." > p2p.md
> freechains-vcs ’#p2p.md’ commit --sign=69929..
1_4F3EE1..
> echo "The [USENET](#usenet.md), ..." >> p2p.md
> freechains-vcs ’#p2p.md’ commit --sign=69929..
2_B58D22..

The commit operation expands as follows:

> freechains-vcs ’#p2p.md’ checkout p2p.remote
> diff p2p.remote p2p.md > p2p.patch
> freechains ’#p2p.md’ post p2p.patch --sign=69929..

A commit first makes a checkout from the repository
into temporary file p2p.remote. Then, it compares this ver-
sion against our local changes, saving the diffs into file
p2p.patch. A patch contains the minimal set of changes to
apply back into the repository, and represents a CmRDT
operation in our model. Finally, the commit posts the patch
file back into the chain. Evidently, the chain name and
signature (#p2p.md and --sign=...) are parameters in the
actual implementation of commit. The checkout operation is
expanded further.

Much time later, the other pioneer synchronizes with us,
checks out the file, and then edits and commits it back:

> freechains ’#p2p.md’ recv ’<our-ip>’
2/2 <-- two commits above
> freechains-vcs ’#p2p.md’ checkout p2p.md
> echo "P2P does not scale!" >> p2p.md
> freechains-vcs ’#p2p.md’ commit --sign=320B5..
3_AE3A1B..

A checkout recreates the latest version of the file in the
repository by applying all patches since the genesis block.
Recall that each patch represents a CmRDT operation to
recreate the final state of the data. The checkout expands
as follows:

> rm p2p.md && touch p2p.md
> for blk in ‘freechains ’#p2p.md’ consensus‘ do

freechains ’#p2p.md’ get payload $blk > p2p.patch
patch p2p.md p2p.patch
if [$? != 0]; then
echo $blk <-- hash of failing patch
break <-- ignore remaining patches
fi

done

The consensus operation of Freechains returns all hashes
since the genesis block, respecting the consensus order. The
loop reads each of the payloads representing the patches
and apply them in order to recreate the file. If any of the
patches fail, the command exhibits the hash of the offending
block and terminates. We discuss this behavior further,
when we illustrate commit conflicts.

Since the last commit above is clearly wrong (P2P net-
works do scale!), other users in the network will dislike it
until the block becomes REVOKED in the chain:

> freechains ’#p2p.md’ dislike 3_AE3A1B.. --sign=USR1
> freechains ’#p2p.md’ dislike 3_AE3A1B.. --sign=USR2
> freechains ’#p2p.md’ dislike 3_AE3A1B.. --sign=USR3
> freechains-vcs ’#p2p.md’ checkout p2p.md
> cat p2p.md
P2p networking is...
The [USENET](#usenet.md), ... <-- no 3rd line

This way, the checkout operation above will apply an
empty patch associated with the revoked block, effectively
removing the wrong line from the file. This mechanism
illustrates how the reputation system enables collaborative
permissionless edition and curation.

Next, we create a conflicting situation in which two au-
thors edit and commit the same line of the file concurrently:

PEER A (more reputation):
> sed -i ’s/P2p/P2P/g’ p2p.md <-- fix typo
> freechains-vcs ’#p2p.md’ commit --sign=69929..
4_A..

PEER B (less reputation):
> sed -i ’s/networking/computing/g’ p2p.md
> freechains-vcs ’#p2p.md’ commit --sign=320B5..
4_B..

SYNCHRONIZE (exchange conflicting forks):
> freechains ’#p2p.md’ recv ’<our-ip>’
1 / 1
> freechains ’#p2p.md’ send ’<our-ip>’
1 / 1
> freechains-vcs ’#p2p.md’ checkout p2p.md
1 hunk FAILED -- saving rejects to file p2p.md.rej
4_B..
> cat p2p.md
P2P networking is... <-- typo fixed (not computing)
The [USENET](#usenet.md), ...

After they commit the conflicting changes, the peers
synchronize in both directions and reach the state of Fig-
ure 6. When we checkout the file, the patches are applied
respecting the consensus order. As a result, we see that the
first branch is applied, but not the second, leaving the file in
the longest possible consistent state. This happens because
of the break in the checkout operation: once a conflict is

10

Fig. 6. The branches in the DAG are ordered by reputation. Only the first
patch is applied successfully (first write wins).

found, no further patches apply in any of the remaining
branches. We chose to adopt a first write wins resolution to
favor work in the branches with more reputation. Never-
theless, the failing patch branch is not totally ignored, since
the checkout saves the conflict file and indicates the block
causing it. We believe this optimistic choice that does not
reject both patches is the most advantageous, since it keeps
the file in an usable state and warns about the conflict
to resolve. For instance, the authors can later decide to
dislike one of the two commits to revoke it and remove the
warning.

4.2 Discussion
In summary, the proposed reputation and consensus mecha-
nism empowers a simple dVCS with cooperative authoring
and automatic conflict resolution. It only requires the stan-
dard diff & patch tools and the basic API of Freechains.

We apply the proposed three-layered CRDT scheme as
follows: The first layer transports the whole commit history
of small patches as a CvRDT between peers, which even-
tually reach the same DAG state. At this layer, the DAG
is just raw data with no attached semantics. In the second
layer, peers need to interpret the DAG as a CmRDT of
small editions to recreate the file. The patch tool is mostly
commutative, except when branches modify the same lines.
Hence, in these situations, we resort to the third layer with
the consensus order, and apply the patches sequentially
until a conflict occurs. The final state of the file is guaranteed
to be consistent, i.e., the result of a sequence of correct patch
applications.

Towards richer decentralized collaborative applications,
we can employ CRDTs to model data other than raw text.
As an example, Automerge [21] manipulates JSON objects,
which supports non-trivial datasets with robust merging
policies, but which could still benefit from consensus to
resolve corner cases.

5 RELATED WORK

Many other systems have been proposed for decentralized
content sharing [4], [9]. Here we consider the classes of
publish-subscribe, federated, and peer-to-peer protocols.

5.1 Publish-Subscribe Protocols
Decentralized topic-based publish-subscribe protocols, such
as XMPP [22], ActivityPub [23], and gossipsub [24], decouples

publishers from subscribers in the network. A key limitation
of pubsubs is that the brokers that mediate communication
still have a special role in the network, such as authenti-
cating and validating posts. Nevertheless, some pubsubs
do not rely on server roles, and instead, use peer-to-peer
gossip dissemination [25], [26], [27], [28], [24], [26]. Most of
these protocols focus on techniques to achieve scalability
and performance, such as throughput, load balancing, and
real-time relaying.

However, these techniques alone are not sufficient to
operate permissionless networks with malicious Sybils [29].
Being generic protocols, pubsubs are typically unaware of
the applications built on top of them. In contrast, as stated
in Section 2, the pubsub of Freechains is conceptually at
the application level and is integrated with the semantics of
chains, which already verifies blocks at publishing time. For
instance, to flood the network with posts, malicious peers
need to spend reputation, which takes hours to recharge
(rule 2 in Table 3). In addition, blocked posts (Figure 5) are
not a concern either, because they have limited reachability.
Another advantage of a tighter integration between the
application and protocol is that Merkle DAGs simplify syn-
chronization, provide persistence, and prevent duplication
of messages. Full persistence resists long churn periods, and
de-duplication tolerates CmRDTs with operations that are
not idempotent.

In summary, Freechains and pubsub middlewares operate
at different network layers, which suggests that Freechains
could benefit of the latter to manage the interconnections
between peers.

5.2 Federated Protocols

Federated protocols, such as e-mail, allow users from one
domain to exchange messages with users of other domains
seamlessly. Diaspora, Matrix, and Mastodon are more recent
federations for social media, chat, and microblogging [9],
respectively.

As a drawback, identities in federations are not portable
across domains, which may become a problem when servers
shutdown or users become unsatisfied with the service [30].
In any of these cases, users have to grab their content, move
to another server, and announce a new identity to followers.

Moderation is also a major concern in federations [9]. As
an example, messages crossing domain boundaries may be
subject to different policies that might affect delivery. With
no coordinated consensus, it is difficult to make pervasive
public forums practical. For this reason, Matrix supports a
permissioned moderation system3, but which applies only
within clients, after the messages have already been flooded
in the network.

As a counterpoint, federated protocols seem to be more
appropriate for real-time applications such as large chats
rooms. The number of hops and header overhead can
be much smaller in client-server architectures compared
to peer-to-peer systems, which typically include message
signing, hash linking, and extra verification rules.

3. Matrix moderation: https://matrix.org/docs/guides/moderation

11

5.3 Peer-to-Peer Protocols

Bitcoin [11] is probably the most successful permissionless
network, but serves specifically for electronic cash. IPFS [15]
and Dat [31] are data-centric protocols for hosting large
files and applications, respectively. Scuttlebutt [10] and
Aether [9] are closer to Freechains goals and cover human-
centric 1→N and N↔N public communication, respec-
tively.

Bitcoin adopts proof-of-work to achieve consensus,
which does not solve the centralization issue entirely, given
the high costs of equipment and energy. Proof-of-stake is
a prominent alternative [32] that acknowledges that cen-
tralization is inevitable, and thus uses a function of time
and wealth to elect peers to mint new blocks. As an ad-
vantage, these proof mechanisms are generic and apply to
multiple domains, since they depend on an extrinsic scarce
resource. In contrast, we chose an intrinsic resource, which
is authored content in the chains themselves. We believe
that human work grows more linearly with effort and is not
directly portable across chains with different topics. These
hypotheses support the intended decentralization of our
system. Another distinction is that generic public ledgers re-
quire permanent connectivity to avoid forks, which opposes
our local-first principle. This is because a token transaction
only has value as part of the longest chain. This is not the
case for a local message exchange between friends, which
has value in itself.

IPFS [15] is centered around immutable content-
addressed data, while Dat [31] around mutable pubkey-
addressed data. IPFS is more suitable to share large and
stable content such as movies and archives, while Dat is
more suitable for dynamic content such as web apps. Both
IPFS and Dat use DHTs as their underlying architectures,
which are optimal to serve large and popular content, but
not for search and discovery. In both cases, users need to
know in advance what they want, such as the exact link to
a movie or a particular identity in the network. On the one
hand, DHTs are probably not the best architecture to model
decentralized human communication with continuous feed
updates. On the other hand, replicating large files across the
network in Merkle DAGs is also impractical. An alternative
is to use DHT links in Merkle payloads to benefit from both
architectures.

Scuttlebutt [10] is designed around public identities that
follow each other to form a graph of connections. This graph
is replicated in the network topology as well as in data
storage. For instance, if identity A follows identity B, it
means that the computer of A connects to B’s in a few hops
and also that it stores all of his posts locally. Scuttlebutt
is aligned to 1→N public identity chains of Freechains in
Table 1. For group N↔N communication, Scuttlebutt uses
the concept of channels, which are in fact nothing more
than hash tags (e.g. #sports). Authors can tag posts, which
appear not only in their feeds but also in local virtual
feeds representing these channels. However, users only see
channel posts from authors they already follow. In practice,
channels simply merge friends posts and filter them by tags.
In theory, to read all posts of a channel, a user would need to
follow all users in the network (which also implies storing
their feeds). A limitation of this model is that new users

struggle to integrate in channel communities because their
posts have no visibility at all. As a counterpoint, channels
are safe places that do not suffer from abuse.

Aether [9] provides peer-to-peer public communities
aligned with N↔N public forums of Freechains. A funda-
mental difference is that Aether is designed for ephemeral,
mutable posts with no intention to enforce global consensus
across peers. Aether employs a very pragmatic approach
to mitigate abuse in forums. It uses established techniques,
such as proof-of-work to combat SPAM, and an innova-
tive voting system to moderate forums, but which affects
local instances only. In contrast, Freechains relies on its
permissionless reputation and consensus mechanisms for
moderation.

Regarding the structure of messages, append-only
Merkle DAGs have been proposed as self-certified archives,
and as CRDTs that provide strong eventual consistency [16],
[5]. However, when these DAGs are open to permissionless
writes, they are subject to abuse, which may degrade the
content and performance of the network. Another aspect
is that a DAG itself has no attached semantics, which
weakens its consistency property at the application level,
which may interpret the DAG in conflicting orders. The
proposed consensus mechanism addresses permissionless
writes and provides a total order for applications (at the
cost of rollbacks).

A similar dVCS have been recently proposed [7], with
a DAG representation and merging policies. To resolve
competition conflicts, they propose to use an external scoring
function, such as users’ reputations. Our proposed consen-
sus mechanism internalizes such reputation scoring func-
tion. Integrated reputation also prevents SPAM and abusive
behavior from byzantine nodes, which could otherwise gen-
erate very large graphs that take forever to synchronize (as
discussed for Byzantine Causal Broadcast [18]).

6 CONCLUSION

In this paper, we propose a permissionless consensus and
reputation mechanism for content sharing in peer-to-peer
networks. We enumerate four main contributions: (i) human
authored content as a scarce resource (proof-of-authoring);
(ii) diversified public forums, each as an independent
blockchain with subjective moderation rules; (iii) abusive
content removal preserving data integrity; and (iv) three-
layered CRDTs to build collaborative applications.

The key insight of the consensus mechanism is to use the
human authoring ability as a scarce resource to determine
consensus. This contrasts with extrinsic resources, such as
CPU power, which are dispendious and not evenly dis-
tributed among people. Consensus is backed by a reputation
system in which users can rate posts with likes and dislikes,
which transfer reputation between them. The only way to
forge reputation is by authoring new content under the
judgement of other users. This way, reputation generation
is expensive, while verification is cheap and decentralized.

The reputation and consensus mechanism is integrated
into Freechains, a peer-to-peer protocol that offers multiple
arrangements of public and private communications. Users
have the power to create public forums of interest and
apply diverse moderation policies. In particular, users can

12

revoke content considered abusive according to the majority,
not depending on centralized authorities. We simulate the
behavior of existing chat and newsgroup forums as if they
were using Freechains to show the practicability of the
protocol as a descentralized alternative for public forums.

On top of the proposed three-layered CRDT architecture,
we prototyped a decentralized version control system that
resolves commit conflicts automatically: (i) at the transport
layer, the full commit history is held in a Merkle DAG count-
ing as a CvRDT; (ii) at the application layer, the commit
patches operate as (mostly) commutative CmRDT opera-
tions; and (iii) after consensus is applied, merge conflicts
are resolved automatically.

Finally, we do not claim that the proposed reputation
system enforces “good” human behavior in any way. In-
stead, it provides a transparent and quantitative mechanism
to help users understand the evolution of forums and act ac-
cordingly. Human creativity contrasts with plain economic
resources (e.g., proof-of-work), which do not appraise social
interactions and also tend to concentrate over the time.

REFERENCES

[1] J. Zittrain, “Fixing the internet,” vol. 362, no. 6417. American
Association for the Advancement of Science, 2018, pp. 871–871.

[2] N. Masinde and K. Graffi, “Peer-to-peer-based social networks:
A comprehensive survey,” SN Computer Science, vol. 1, no. 5, pp.
1–51, 2020.

[3] D. Koll, J. Li, and X. Fu, “The good left undone: Advances and
challenges in decentralizing online social networks,” Computer
Communications, vol. 108, pp. 36–51, 2017.

[4] S. A. Theotokis and D. Spinellis, “A survey of peer-to-peer content
distribution technologies,” ACM Comput. Surv., Dec. 2004.

[5] M. Kleppmann, “Making crdts byzantine fault tolerant,” in Pro-
ceedings of the 9th Workshop on Principles and Practice of Consistency
for Distributed Data, 2022, pp. 8–15.

[6] C. Sun, X. Jia, Y. Zhang, Y. Yang, and D. Chen, “Achieving
convergence, causality preservation, and intention preservation
in real-time cooperative editing systems,” ACM Transactions on
Computer-Human Interaction (TOCHI), vol. 5, no. 1, pp. 63–108,
1998.

[7] B. Nasrulin and J. Pouwelse, “Decentralized collaborative version
control,” in Proceedings of the 2nd International Workshop on Dis-
tributed Infrastructure for Common Good, 2021, pp. 11–16.

[8] J. R. Douceur, “The sybil attack,” in International workshop on peer-
to-peer systems. Springer, 2002, pp. 251–260.

[9] J. Graber, “Decentralized social ecosystem review,” BlueSky, Tech.
Rep., 2021.

[10] D. Tarr et al., “Secure scuttlebutt: An identity-centric protocol for
subjective and decentralized applications,” in Proceedings of ACM
ICN’19, 2019, pp. 1–11.

[11] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,”
Tech. Rep., 2009.

[12] F. Sant’Anna, F. Bosisio, and L. Pires, “Freechains: Disseminação
de conteúdo peer-to-peer,” in Workshop on Tools, SBSeg’20.

[13] M. Shapiro, N. Preguiça, C. Baquero, and M. Zawirski, “Conflict-
free replicated data types,” in Symposium on Self-Stabilizing Sys-
tems. Springer, 2011, pp. 386–400.

[14] V. B. Gomes, M. Kleppmann, D. P. Mulligan, and A. R. Beresford,
“Verifying strong eventual consistency in distributed systems,”
Proceedings of the ACM on Programming Languages, vol. 1, no.
OOPSLA, pp. 1–28, 2017.

[15] J. Benet, “Ipfs-content addressed, versioned, p2p file system,”
arXiv preprint arXiv:1407.3561, 2014.

[16] F. Jacob, C. Beer, N. Henze, and H. Hartenstein, “Analysis of the
matrix event graph replicated data type,” IEEE access, vol. 9, pp.
28 317–28 333, 2021.

[17] M. Kleppmann, A. Wiggins, P. van Hardenberg, and M. Mc-
Granaghan, “Local-first software: you own your data, in spite of
the cloud,” in Proceedings of Onward’19, 2019, pp. 154–178.

[18] M. Kleppmann and H. Howard, “Byzantine eventual consistency
and the fundamental limits of peer-to-peer databases,” arXiv
preprint arXiv:2012.00472, 2020.

[19] A. B. Kahn, “Topological sorting of large networks,” Communica-
tions of the ACM, vol. 5, no. 11, pp. 558–562, 1962.

[20] H. Sanjuan, S. Poyhtari, P. Teixeira, and I. Psaras, “Merkle-crdts:
Merkle-dags meet crdts,” arXiv preprint arXiv:2004.00107, 2020.

[21] M. Kleppmann and A. R. Beresford, “A conflict-free replicated json
datatype,” IEEE Transactions on Parallel and Distributed Systems,
vol. 28, no. 10, pp. 2733–2746, 2017.

[22] P. Saint-Andre, K. Smith, R. Tronçon, and R. Troncon, XMPP: the
definitive guide. ” O’Reilly Media, Inc.”, 2009.

[23] C. Webber, J. Tallon, and O. Shepherd, “Activitypub,” W3C Recom-
mendation, W3C, Jan, 2018.

[24] D. Vyzovitis and Y. Psaras, “Gossipsub: A secure pubsub protocol
for unstructured, decentralised p2p overlays,” Protocol Labs, Tech.
Rep., 2019.

[25] R. Baldoni, R. Beraldi, V. Quema, L. Querzoni, and S. Tucci-
Piergiovanni, “TERA: Topic-Based Event Routing for Peer-to-Peer
Architectures,” in Proceedings of the International Conference on
Distributed Event-Based Systems, 2007, pp. 2–13.

[26] J. A. Patel, É. Rivière, I. Gupta, and A.-M. Kermarrec, “Rappel:
Exploiting interest and network locality to improve fairness in
publish-subscribe systems,” Computer Networks, vol. 53, no. 13, pp.
2304–2320, 2009.

[27] M. Matos, A. Nunes, R. Oliveira, and J. Pereira, “Stan: exploiting
shared interests without disclosing them in gossip-based pub-
lish/subscribe.” in IPTPS, 2010, p. 9.

[28] F. Rahimian, S. Girdzijauskas, A. H. Payberah, and S. Haridi,
“Vitis: A gossip-based hybrid overlay for internet-scale pub-
lish/subscribe enabling rendezvous routing in unstructured over-
lay networks,” in 2011 IEEE International Parallel & Distributed
Processing Symposium. IEEE, 2011, pp. 746–757.

[29] D. Vyzovitis, Y. Napora, D. McCormick, D. Dias, and Y. Psaras,
“Gossipsub: Attack-resilient message propagation in the filecoin
and eth2. 0 networks,” Protocol Labs, Tech. Rep., 2020.

[30] A. Auvolat, “Making federated networks more distributed,” in
2019 38th Symposium on Reliable Distributed Systems (SRDS). IEEE,
2019, pp. 383–3831.

[31] D. C. Robinson, J. A. Hand, M. B. Madsen, and K. R. McKelvey,
“The dat project, an open and decentralized research data tool,”
Scientific data, vol. 5, no. 1, pp. 1–4, 2018.

[32] L. M. Bach, B. Mihaljevic, and M. Zagar, “Comparative analysis
of blockchain consensus algorithms,” in 2018 41st International
Convention on Information and Communication Technology, Electronics
and Microelectronics (MIPRO). IEEE, 2018, pp. 1545–1550.

Francisco Sant’Anna received his PhD degree
in Computer Science from PUC-Rio, Brazil in
2013. In 2016, he joined the Faculty of Computer
Science at the Rio de Janeiro State University,
Brazil. His research interests include Program-
ming Languages and Concurrent & Distributed
Systems.

