
11

Terra: Flexibility and safety in Wireless Sensor Networks

ADRIANO BRANCO, Pontifı́cia Universidade Católica do Rio de Janeiro
FRANCISCO SANT’ANNA, Pontifı́cia Universidade Católica do Rio de Janeiro
ROBERTO IERUSALIMSCHY, Pontifı́cia Universidade Católica do Rio de Janeiro
NOEMI RODRIGUEZ, Pontifı́cia Universidade Católica do Rio de Janeiro
SILVANA ROSSETTO, Universidade Federal do Rio de Janeiro

Terra is a system for programming wireless sensor network (WSN) applications. It combines the use of
configurable virtual machines with a reactive scripting language which can be statically analysed to avoid
unbounded execution and memory conflicts. This approach allows the flexibility of remotely uploading code
on motes to be combined with a set of guarantees for the programmer. The choice of the specific set of com-
ponents in a virtual machine configuration defines the abstraction level seen by the application script. We
describe a specific component library built for Terra, which we designed taking into account the functionality
commonly needed in WSN applications — typically for sense and control. We also discuss the programming
environment resulting from the combination of a statically analyzable scripting language with this library
of components. Finally, we evaluate Terra by measuring its overhead in a basic application and discussing
its use and cost in a typical monitoring WSN scenario.

Categories and Subject Descriptors: C.2.4 [Computer Systems Organization-Computer-
Communication Networks]: Distributed Systems; D.3.4 [Software-Programming Languages]:
Processors

General Terms: Design, Languages, Verification, Experimentation

Additional Key Words and Phrases: WSN Wireless Sensor Networks, Virtual Machine, Reactive Program-
ming, Safety

ACM Reference Format:
Adriano Branco, Francisco Sant’Anna, Roberto Ierusalimschy, Noemi Rodriguez, and Silvana Rossetto, 2015.
Terra: Flexibility and safety in Wireless Sensor Networks. ACM Trans. Sensor Netw. 1, 1, Article 11 (January
2015), 28 pages.
DOI:http://dx.doi.org/10.1145/0000000.0000000

1. INTRODUCTION
Programming a wireless sensor network (WSN) remains a challenge. WSNs are typi-
cally composed by computing devices (motes) that communicate via radio and rely on
batteries for energy. Although a whole range of microcontrollers can be used in this
setting, it is very common, due to cost restrictions and scale of usage, to employ units
with very limited memory and computing resources. This scarcity of resources, along
with the event-oriented nature of applications and the need for coordination among
large numbers of nodes, make programming applications a difficult and error-prone
task [Awan et al. 2007; Kothari et al. 2007; Mottola and Picco 2011].

Author’s addresses: A. Branco and F. Sant’Anna and R. Ierusalimschy and N. Rodriguez, Department of In-
formatics, Pontifı́cia Universidade Católica do Rio de Janeiro; S. Rossetto, Department of Computer Science,
Universidade Federal do Rio de Janeiro.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2015 ACM 1550-4859/2015/01-ART11 $15.00
DOI:http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Sensor Networks, Vol. 1, No. 1, Article 11, Publication date: January 2015.

11:2 A. Branco et al.

It is also often the case that the user must reprogram sensor network nodes after
they are in place. This is hard to do physically, because in most cases it is difficult to
recover the motes from the position in which they are installed. The obvious solution
is to do the updates through radio messages; however, transferring complete binaries
over radio can lead to high energy consumption, and is thus undesirable.

On the other hand, because of their restricted resources and deployment character-
istics, a given sensor network is normally used for a single category of application,
such as environment control or building security, even if the application itself evolves
over time. This indicates that a small set of coordination and processing patterns can
support all of the applications that a sensor network must run along its lifetime.

Taking this into consideration, researchers have in the past proposed the idea of
application-specific virtual machines (ASVMs) [Levis et al. 2005], combining domain-
specific languages with virtual machines. A convenient ASVM can make programs
very concise, imposing very little overhead on their interpretation and on their trans-
mission over the network. In his work with the virtual machine Maté, Levis exper-
imented with three different domain-specific languages, each of them translated to
code interpretable by the virtual machine using specific compilers. However, develop-
ing a separate language for each new application niche is costly. Areas with small user
bases will seldom be able to harness the resources for designing and implementing a
new programming language. Besides, even in different application areas, WSN appli-
cations tend to follow restricted patterns of behavior and interaction, such as creating
and maintaining groups of nodes to collect data and make local decisions, or forward-
ing the collected data to a sink node.

We believe that WSN programming environments can benefit from commonality not
only inside a single application area. Programming patterns such as collecting values
to a base station or broadcasting them to the whole network are recurrent in differ-
ent application areas, with variations regarding issues of reliability or security. So we
discuss an alternative approach to ASVMs, in which common programming patterns
are designed and implemented separately as libraries of components. These compo-
nents may be combined as needed, creating customized virtual machines with abstrac-
tions provided by the component interfaces. Instead of using application-specific pro-
gramming languages, we propose the use of a scripting language with general support
for the problems encountered in WSNs. Scripting languages enforce a programming
model that glues components together to create powerful applications in a few lines of
code [Ousterhout 1998]. This makes them suitable for creating programs that benefit
from pre-defined sets of components and that can be easily sent over the network.

In this paper, we describe the Terra programming system, which com-
bines customized virtual machines with tCéu, a reimplementation of the
Céu [Sant’Anna et al. 2013] programming language. Figure 1 presents the three ba-
sic elements of Terra – the language tCéu, a set of customised pre-built components,
and an embedded virtual-machine engine tVM.

Céu is a scripting language that addresses general issues related to programming
WSN motes. Its synchronous and reactive nature facilitates the handling of events,
and it provides concurrency guarantees that simplify interactions with multiple ex-
ternal sources. We believe it is fundamental to push as many safety guarantees to
compile time as possible, specially in what relates to shared-memory issues and to
responsiveness. In Terra, applications are written in tCéu and are compiled to tVM
virtual-machine code, which interacts with the environment through Terra’s virtual
machine components. tVM is specifically designed for the tCéu execution model, while
Terra components represent a second level of programming and provide abstractions
for specific interaction patterns, such as routing and data collection. Terra provides a
library of components that implement typical programming patterns. When building

ACM Transactions on Sensor Networks, Vol. 1, No. 1, Article 11, Publication date: January 2015.

Terra: Flexibility and safety in Wireless Sensor Networks 11:3

Fig. 1. Terra system basic elements.

a tVM for a given wireless sensor network, the programmer can choose whether or not
to include each Terra component in the configuration, setting different boundaries for
the provided abstractions. New components can also be added.

Figure 2 shows the Terra application lifecycle. The tCéu program is compiled and
checked statically in a conventional computer, generating code for the virtual machine
(the bytecode). This bytecode must then be transferred (possibly over a wireless con-
nection) to the sensor node on which it will run. The current tVM implementation and
its customized components are built over TinyOS [Levis et al. 2004]. The only part
of tCéu scripts that escape static analysis are calls to components provided by tVM,
which are encapsulated in modules and have been extensively tested beforehand.

Fig. 2. Terra application lifecycle: compilation and execution.

The remainder of the paper is organized as follows. Section 2 presents the Terra
programming environment, discussing its component library as well as its scripting
language and their interaction. Section 3 describes the implementation of the Terra
Virtual Machine tVM. In Section 4, we discuss some example applications and evaluate
their memory and energy usage. Section 5 presents related work. Finally, Section 6
contains some closing remarks.

ACM Transactions on Sensor Networks, Vol. 1, No. 1, Article 11, Publication date: January 2015.

11:4 A. Branco et al.

2. THE TERRA SYSTEM
The Terra system can be built in different coonfigurations. A basic Terra deployment
consists of a specific version of the tVM virtual machine and a corresponding definition
file. The definition file contains the interfaces of the components included in the virtual
machine and must be included in the tCéu application built for this VM. The binary
code of the VM must be loaded (over a serial interface, by USB) to all network nodes
before they are physically distributed over the working area.

The Terra compiler converts the tCéu code into virtual machine bytecode taking
the definition file as part of its input, so as to validate and appropriately translate
component usage. The Terra system also includes a tool that disseminates the bytecode
to WSN nodes over the radio.

Application scripts are written as a series of reactions to events. tCéu supports multi-
ple lines of execution called trails. However, the structure of tCéu programs is not that
of typical event handlers: trails can contain blocking await statements. Input events
are broadcast to all awaiting trails, i.e., at any point in execution, each of a program’s
trails is either reacting to the current event or awaiting another event; in other words,
trails are always synchronized at the current (and single) event.

Both Terra components and the tCéu script may trigger and handle events. However,
a single event must be handled either by tCéu or by a component, i.e., there can not be
handlers for one event defined in both environments. Events are triggered in the tCéu
code by using the emit keyword, and handled through await. Events thus integrate
the scripting language with the components that are made available by tVM. Output
events are emmitted from the tCéu script to be handled by Terra components, while
input events are triggered by Terra components and awaited by the tCéu script. The
tCéu script may also interact with Terra’s components through system calls, which are
used for initialization and configuration of components.

As an introductory example, the Terra program in Figure 3 repeatedly reads the
light and temperature sensors and tests whether either reading has risen above a
predefined limit. If this happens, the program turns on a led to indicate the anomalous
condition.

The par/and construct in line 3 spawns two trails in parallel (lines 4–5 and 7–8), and
will finish execution only when both of them terminate. Because both trails contain
await statements, this will happen only when both the PHOTO and TEMP events
occur. The events triggered by the program (REQ PHOTO, REQ TEMP, and LED0),
and the events awaited by it (PHOTO and TEMP) are part of the interface provided by
the virtual machine. The program also illustrates the provision of timers as first-class
elements: in line 13, it uses a timer to ensure the led is kept on for one minute, before
turning it off and proceeding to the next step in the loop.

This program uses output events REQ PHOTO, REQ TEMP, and LED0, which are
handled by Terra components. REQ PHOTO and REQ TEMP trigger readings that
return their results by signalling input events PHOTO and TEMP, which also carry
the values that were read. Output event LED0 takes one argument (constants ON or
OFF), and does not trigger any input event.

The par/and composition rejoins when all of its trails terminates. tCéu also supports
par/or compositions, which rejoin when any of the spawned trails terminates (see Sec-
tion 2.3).

2.1. Terra Components
The components included in a specific virtual machine define the interface between
the application script and the environment, and thus determine the abstraction level
at which the script programmer will work. Terra offers a library of components that

ACM Transactions on Sensor Networks, Vol. 1, No. 1, Article 11, Publication date: January 2015.

Terra: Flexibility and safety in Wireless Sensor Networks 11:5

1: var ushort tValue,pValue;
2: loop do
3: par/and do
4: emit REQ_PHOTO();
5: pValue=await PHOTO;
6: with
7: emit REQ_TEMP();
8: tValue=await TEMP;
9: end
10: if pValue > 200 or tValue > 300 then
11: emit LED0(ON);
12: end
13: await 1min;
14: emit LED0(OFF);
15: end

Fig. 3. A simple example in Terra.

can be included or not in a specific virtual machine. As far as possible, these com-
ponents are parameterized for genericity. New components can also be included by
programmer-savvy users to create abstractions for new programming patterns, but
our goal is to offer a set of components that is sufficient for a range of common applica-
tions. This is feasible because most applications for sensor networks are variations of a
basic monitoring and control pattern. Because processing resources are limited, these
variations typically involve only basic operations for accessing sensors and actuators
and coordination among motes.

In order to choose a set of general-use and parameterized components that
can be useful in a wide range of different applications, we analysed some WSN
applications described in the literature. [Newton et al. 2007; Cervantes et al. 2008;
Kothari et al. 2007]. Another important source was the research on macroprogram-
ming (network-wide programming), which in fact was one of our early motivations
for this work. We considered proposals for facilitating programming in WSNs with
restricted resources [Newton et al. 2007; Newton and Welsh 2004; Kothari et al. 2007;
Awan et al. 2007; Madden et al. 2005; Cervantes et al. 2008; Bakshi et al. 2005]. A set
of WSN applications was used to validate the functionalities and parametrizations
chosen for each component. As the result of this work [Branco 2011], we developed a
set of components organized in four areas:

(1) communication — support for radio communication among sensor nodes;
(2) group management — support for group creation and other control operations;
(3) aggregation — support for information collection and synthesis inside a group;
(4) local operations – support for accessing sensors and actuators.

The next sections discuss the components in each of these areas.

2.1.1. Communication. The Communication component provides the basic send/receive
primitives to exchange radio messages among sensor nodes. Furthermore, it provides
specific protocols for message routing from sensor nodes to a base station (the WSN
root node) and for dissemination of parameters or new applications from a base station
to sensor nodes.

Two types of messages can be used by the application developer. The first one allows
exchanging messages among nodes in the same group by using broadcast or unicast
dissemination modes. Output event SEND GR sends a message either to all nodes in

ACM Transactions on Sensor Networks, Vol. 1, No. 1, Article 11, Publication date: January 2015.

11:6 A. Branco et al.

a group or to a specific node. When a message is received by a node, this is signalled to
the script code through a new REC GR input event. In the current implementation of
the Communication component, messages are routed only within the spatial limits of
their group. Unicast messages are typically used to reply to a request made by another
node of the same group. The second type of message is used for the specific case in
which a node needs to send a message directly to the base station. In this case, the
script emits output event SEND BS. Terra currently implements the SEND BS event
using the TinyOS CTP-Collection Tree protocol [Gnawali et al. 2009].

To provide delivery guarantees (no loss or duplication) for unicast messages, the
Communication component implements a confirmation mechanism. When the compo-
nent is configured with this option, the application does not need to deal explicitly with
message retransmissions and duplications.

2.1.2. Grouping. Because WSN applications frequently involve large numbers of node,
organizing nodes into groups is one of the basic tasks in programming these applica-
tions. The Group Management component allows for the simultaneous existence of dif-
ferent network partitions, and is based on identifiers maintained at each node. These
identifiers may be initialized statically or dynamically. Messages sent inside a group
carry the group identifier and are sent using a flooding protocol with a maximum num-
ber of hops (which can also be configured). At each node, such a message is delivered
to the application only if the node is currently in the destination group.

This basic module allows the program developer to implement several alternative
group structures. As an example, in order to broadcast a message one can initialize
all nodes with the same group identifier. In this case, the maximum number of hops
can be used to define the reachable range of the group. Another example would be the
creation of dynamic groups: the group identifier can be defined by the current node’
state, for instance based on the value read from a sensor.

The Group Management component also provides leader election. When this option
is selected (through a parameter), nodes in a group transparently send queries to lo-
cate the leader. In the case when a leader has not yet been defined, a new election is
started. The current implementation of this component always chooses the node with
the largest remaining battery charge in each group. The script running on each node
can also define the node’s behavior during the election process, for instance declining
to participate in the procedure.

Figure 4 presents an example program that uses group communication facilities.
Line 2 invokes system call grNew() which allows the current node to join a new

group. In this simple case, all nodes will be included in a single group. The second
and third arguments of grNew() define constant group identifiers.The fourth argument
defines the maximum range in hops. The fifth argument initializes the “active” flag as
TRUE. The next arguments define an “election off” (OFF) state with node zero as the
leader (not used in this case).

Terra maintains all the configuration parameters of a group in a data structure that
can be accessed by the application script. In Figure 4, the gr1 variable (defined in line
1) is used for that. The script can modify these values at any time.

In the program of Figure 4, node 2 periodically sends a counter value to its neigh-
bours (lines 7–13). Each neighbouring node shows the three less significant bits of the
received counter on its leds (lines 15–18). As discussed before, the system call grNew()
(lines 1–2) makes each node join a group described in the structure assigned to gr1.
A message structure — countMsg — is defined in line 4. In this case, we use the first
message field value val1 to send the counter value. The send command at line 11 sends
the countMsg message structure to all neighbours defined in the gr1 group. The await

ACM Transactions on Sensor Networks, Vol. 1, No. 1, Article 11, Publication date: January 2015.

Terra: Flexibility and safety in Wireless Sensor Networks 11:7

1: var group gr1;
2: grNew(&gr1,1,1,3,TRUE,OFF,0);
3:
4: var msg countMsg;
5:
6: if NODE_ID == 2 then
7: countMsg.val1 = 0;
8: emit LEDS(0xff);
9: loop do
10: countMsg.val1 = countMsg.val1 + 1;
11: emit SEND_GR(&gr1,&countMsg);
12: await 1s;
13: end
14: else
15: loop do
16: countMsg = await REC_GR;
17: emit LEDS(countMsg.val1);
18: end
19: end

Fig. 4. Grouping and communication example in Terra.

command at line 16 waits for a group message and updates its countMsg structure with
the received data.

2.1.3. Aggregation. The aggregation component provides abstractions for collection
and synthesis of data within a group of sensor nodes. Because data aggregation re-
quires the implementation of distributed algorithms for group communication and
processing of the values collected by different nodes, higher-level abstractions for this
pattern can simplify the development of applications for WSNs.

In the related work, we found different approaches to aggregation. Most of them
provide facilities to collect values (group communication algorithm) but leave the task
of coding the aggregation operation to the developer.

The Aggregation component provided by Terra takes as input the group identifier,
the physical quantity to be measured by each sensor node (e.g., temperature, photo)
and the aggregation/reduction function to be used. The current implementation of this
component provides the following built-in functions: SUM (sum of values), AVG (aver-
age values), MAX (maximum value) and MIN (minimum value). In addition, each ag-
gregation operation is also associated with a relational operator (>,<,<=, >=,==, ! =)
and a reference value. Besides the resulting value, the aggregation operation also accu-
mulates the number of partial values that tested as true in this criterium. Aggregation
operations are performed per group, that is, one aggregate value is produced for each
group. The script starts an aggregation operation by emitting the ouput event AG-
GREG with the specific aggregation identifier as parameter. When the aggregation is
completed, this is signalled by the AGGREG DONE event. As in the Group Manage-
ment component, Terra maintains all the configuration parameters of aggregation in
a data structure that can be modified at any moment.

The program in Figure 5 illustrates the use of the aggregation facilities. In lines 1–
2, a new group (gr1) is created. A single leader will be automatically elected for that
group. At each node, the id of the group’s leader will be stored in gr1.leader.

In lines 3–4, a new agregation (agA) is created by invoking the system call agNew().
This agregation will be associated with the gr1 group (the second argument). The third

ACM Transactions on Sensor Networks, Vol. 1, No. 1, Article 11, Publication date: January 2015.

11:8 A. Branco et al.

1: var group gr1;
2: grNew(&gr1,1,0,2,TRUE,ACTIVE,0);
3: var aggreg agA;
4: agNew(&agA,&gr1,TEMP,AVG,GTE,0);
5:
6: var agResult data;
7: var msg dataMsg;
8:
9: loop do
10: await 10s;
11: if (NODE_ID == gr1.leader) then
12: emit AGGREG(&agA);
13: data = await AGGREG_DONE;
14: dataMsg.value4 = data.value;
15: emit SEND_BS(&dataMsg);
16: end
17: end

Fig. 5. Aggregation and communication example in Terra.

and fourth arguments to agNew() define the sensor to be read (temperature in this case)
and the aggregation operation to be applied (average). The next arguments define a re-
lational operator (GTE, for greater then or equal) and the reference value (not used in
this case). Line 6 creates the predefined data structure that holds the aggregate value.
In lines 11–12, the leader node starts the aggregation operation by triggering the AG-
GREG output event (emit AGGREG()). (Non-leader nodes will transparently react to
the messages triggered by the aggregation.) In line 13, the leader node waits for the
end of the aggregation and assigns the result to data. Next, it assigns this value to the
data field in dataMsg and, in line 15, sends the message to the base station, illustrating
the use of the output event SEND BS. The use of this event is similar to that of the
sendgroup command, but in this case it is not necessary to indicate a group id.

2.1.4. Local Operations. This set of operations comprises operations to read sensors
and residual energy battery, define led’s configuration and access input and output
devices of the microcontroller. Terra encapsulates all these operations in a component
called Local Operations providing them as output events. Timers, on the other hand,
are handled directly by the tCéu language with the await <time> command. Our first
example (Figure 3) illustrated the use of sensors, leds, and timers.

2.2. Customizing new VMs
Although Terra has a set of ready-made components which support the basic inter-
action patterns in typical sensing applications, the idea is that expert programmers
can create components for new programming patterns so that the combination of tCéu
script with available events and system calls create specific flavors of Terra.

In the current implementation, new components must be programmed in nesC.
Terra programs include a configuration file that defines the script/component inter-
face. This file must define all events that can be either triggered or handled by tVM
components, as well as commands to create the constants and data structures used by
these components. Any modification to tVM components requires that a new runtime
be loaded on the motes. This is, in general, not easily done by radio, so the idea is that
motes should be installed with runtime support for current and foreseen needs. This
isn’t a big issue considering that possible functionalities depend on the characteristics

ACM Transactions on Sensor Networks, Vol. 1, No. 1, Article 11, Publication date: January 2015.

Terra: Flexibility and safety in Wireless Sensor Networks 11:9

of hardware and on the network topology already defined in the deployment phase.
For example, there will never be the need for new sensor components, because it is
not feasible to install new hardware after the network is deployed. The same idea is
roughly true for routing protocols: the protocols selected for the installed tVM will be
the ones that are adequate for the network topology and density, which will typically
not change. We believe that most changes unrelated to hardware will be possible to
implement either with the scripting language or using a different parameter in an
existing component.

The creation of new components allows expert programmers to design VMs that
offer event interfaces at higher abstraction levels than the basic Terra interface. In
another direction, it is also possible to lower the abstraction level of the tVM, remov-
ing components, and leave more decisions to the script. This is useful, for instance, to
allow specific applications to decide how they will handle faults or even routing. In the
constrained-resources environment of WSN, it is often the case that applications must
code their own routing protocols, carrying the performance onus only of the specific fea-
tures needed for the application. The script can implement a specific communication
protocol using only very basic communication primitives from the Terra components.
The macro system can again be used to allow other parts of the application to use
the high-level protocol as if it were defined by components. This allows the program-
mer more flexibility in experimenting an application with different communication and
fault-handling services, which may possibly later become tVM components.

2.3. Programming with Céu in Terra
Céu was originally developed at PUC-Rio as a compiled language, and runs on Ar-
duino, TinyOS, and SDL 1. We chose Céu as Terra’s scripting language because of
its reactive nature and its support for high-level control primitives and compile-
time safety guarantees. Céu provides a parallel construct and a blocking await
statement that allows programs to handle multiple events at the same time. In
contrast with standard split-phase event-based systems, such as nesC and Con-
tiki [Gay et al. 2003; Dunkels et al. 2004], Céu can keep sequential and separate lines
of execution (trails) for each activity in the program. Furthermore, the extra support
for parallelism provides precise information about the program control flow to the
Céu compiler, enabling a number of static safety guarantees, such as race-free shared-
memory [Sant’Anna et al. 2013].

Trails in Céu are guided by reactions to the environment, which, in the case of Terra,
is represented by the tVM components introduced in Section 2.1. tCéu and components
in the VM communicate through system calls, output events and input events. System
calls and output events cross the script boundary towards the VM components, while
input events go in the opposite direction, crossing the VM boundary towards the script.
System calls behave like normal function calls and are used to initialize and configure
the components (e.g. grNew()). The invocation of a system call is synchronous: control
returns to the script when the system call finsihes execution. Programmers writing
new system calls should make sure their implementation does not block (this restric-
tion is compatible with the intended use of system calls). Output events are used to
request asynchronous operations to run in the components (e.g. emit REQ TEMP();).
Signalling an output event is an asynchronous operation, and returns immediately
without blocking the script. Input events, in contrast, cross the VM boundary towards
the script and guide its execution through successive reactions, one for each new event.
An event occurrence starts a new reaction in the script, awaking all trails awaiting that
event (e.g, await TEMP).

1http://ceu-lang.org/

ACM Transactions on Sensor Networks, Vol. 1, No. 1, Article 11, Publication date: January 2015.

11:10 A. Branco et al.

Programs in Céu are designed by composing blocks of code through sequences, con-
ditionals, loops, and parallelism. The combination of parallelism with standard control
flow enables hierarchical compositions, in which self-contained blocks of code can be
deployed independently. To illustrate the expressiveness of compositions in Céu, con-
sider the two variations of the structure in Figure 6.

loop do
par/and do
<...>

with
await 1s;

end
end

loop do
par/or do
<...>

with
await 1s;

end
end

Fig. 6. Compositions in Céu.

In the par/and loop variation, the code block in the first trail (represented as <...>)
is repeated every second at minimum, as the second trail must also terminate to rejoin
the par/and primitive and restart the loop. In the par/or loop variation, if the code
block does not terminate within one second, the second trail rejoins the composition
(cancelling the first trail) and restarts the loop. These structures represent, respec-
tively, sampling and timeout patterns, which are typically found in WSN applications.

Scripts in Céu follow the synchronous concurrency model, that is, reactions to input
events run to completion and never overlap: in order to proceed to the next event, the
current event must be completely handled by the script. To ensure that scripts are
always reactive to incoming events, the synchronous model relies on the guarantee
that a reaction always executes in bounded time. The original Céu compiler statically
verifies that programs contain only bounded loops (i.e., loops that contain an await
statement in every possible execution path [Sant’Anna et al. 2013]). Even though Céu
supports multiple lines of execution, accesses to shared memory are safe. Because pro-
grams can react to only one component-triggered event at a time, the Céu compiler
also performs a flow analysis to detect concurrent accesses [Sant’Anna et al. 2013]: if
two accesses to a variable can occur in reactions to the same event and are in parallel
trails, then the compiler issues an error message.

For the use of Céu in Terra, we created a new implementation of the language that
generates code for tVM. The tCéu language inherits all of the characteristics of Céu
discusse above, and its implementation inherited all the safety checks from the original
compiler. In the original language, however, any call to C is exempt of verification. In
the new implementation, the system calls provided by Terra are the only way to escape
this verification. Because only the system calls that are part of component interfaces
are available, it is feasible to ensure that these run in bounded time (e.g., do not contain
recursive calls and infinite loops).

As a trade-off for safety, the Céu design imposes limitations on language expressive-
ness; it is not possible to program computationally-intensive operations and hard real-
time responsiveness, possibly making it hard to program low level code such as radio
protocols [Sant’Anna et al. 2013]. In Terra, the tCéu language is used only as script-
ing language to glue components written in em nesC/TinyOS. All virtual machine code
and low level components rely on the TinyOS architecture.

3. IMPLEMENTATION
The Céu programming language is originally compiled to C and Céu scripts can include
chunks of C code. In Terra, we want only the VM components to escape the safety

ACM Transactions on Sensor Networks, Vol. 1, No. 1, Article 11, Publication date: January 2015.

Terra: Flexibility and safety in Wireless Sensor Networks 11:11

analysis, so we took out the facility to include arbitrary C code, but we did maintain
all of Céu’s original control structures.

A Terra program is compiled to a bytecode file that can then be disseminated to
the network nodes, where it is interpreted by the Terra virtual machine (tVM), which
implements the bytecode interpreter, the execution model, the code dissemination ser-
vice, and some specific customized components.

Our use of Céu required some extensions to the language itself and a number of
changes to the compiler in order to support the concept of a cusomizable virtual ma-
chine. The main changes, described in next subsections, are the new type system for
the scripting language, the integration between scripting language and the customized
components, the adaptation of Céu execution model inside the virtual machine, the
new tCéu compiler to generate virtual machine bytecode, the virtual machine itself
including the bytecode dissemination algorithm. At the end of the section we present
the operation process.

3.1. Types
In Céu, data definition and manipulation relies on the use of C. For Terra, we defined
a type system based only on integer values with 8, 16, and 32 bits, and array of inte-
gers. Pointer types are not allowed for safety reasons. Floating point types are also not
included, as they as not typically used in the resource-restricted context of WSNs. The
new Terra types are: byte, short, long, ubyte, ushort, and ulong, respectively 8, 16, and
32 bits signed and unsigned types.

We included support for the definition of structures that maintain information used
in the interface between the user program and the tVM components. A regtype dec-
laration creates new registers (again, originally Céu uses embedded C structures.) A
register can only have fields that are values of basic types or arrays of basic type. Fig-
ure 7 (lines 4–10) shows an example of register declaration and use. We also defined
declarations for creating message types. A packet declares a new abstract register type
which must contain a field of a special type called payload. Subsequently, this abstract
register type may be used in a register type definition, using a pktype declaration. In
this declaration the user can specify sub-register fields for the abstract packet regis-
ter’s payload. Figure 7 (lines 12–26) shows an example.

The type system of Terra has simple rules. Assignments of integer values to any in-
teger variable are allowed and, if necessary, automatic type casting occurs. Each auto-
matic type casting generates a compile-time warning. A register value can be assigned
only to another identically-typed variable.

The integer assignment rules and warnings are also applied in passing arguments
of functions and events. Register arguments are always passed by reference and an
additional rule verifies the compatibility between a packet type and a register type. An
integer-type variable may be passed by reference using the & operand and, in this case,
the argument type must be defined using attribute *. An argument is the only place
where the address operator is allowed. Figure 7 (lines 29–32) shows valid attribution
examples of Terra types/variables.

3.2. Integration between script and components
In Céu, the user program may indicate any external (C) events and functions it will
access. In the virtual machine approach, we must allow the script to access only events
and functions that have been previously embedded in the virtual machine in which
it will execute. We have thus decided that, besides input and output events, the tVM
components would also provide functions, to allow some interactions to occur in a more
natural way than would be the case if the script had always to resort to emitting and
requesting events for all of its interactions with the environment.

ACM Transactions on Sensor Networks, Vol. 1, No. 1, Article 11, Publication date: January 2015.

11:12 A. Branco et al.

1: var ushort nodeId; // Simple var
2: var ushort[5] sensorReads; // Array var
3:
4: regtype myData with // Register type
5: var ubyte sequence;
6: var ushort nodeID;
7: var ushort sensorValue;
8: end
9:
10: var myData sensorData; // Register var
11:
12: // Abstract register type
13: packet radioMsg with
14: var ubyte msgId;
15: var ushort target;
16: var payload[20] data; // 20 bytes
17: end
18:
19: // Register/packet type
20: pktype userMsg of radioMsg with
21: var ubyte seq;
22: var ushort sensorVal;
23: end
24:
25: // Register/packet var
26: var userMsg sendMsg;
27:
28: // Valid attribution examples
29: nodeId = 5;
30: sensorData.sensorValue = sensorReads[0];
31: sendMsg.target=1;
32:sendMsg.sensorVal=sensorData.sensorValue;

Fig. 7. New Terra type system examples

The virtual machine developer must describe the custom data structures, external
events, and functions that the tVM provides in a configuration block to be included file
in the user application program. The customized virtual machine and the configuration
file must be distributed together to ensure the correct compatibility. Figure 8 shows an
example configuration block.

3.3. Execution model
The interpreter is controlled by the tVM Engine. Each task runs to completion in a
single-thread model, guaranteeing race-free conditions over application trails and em-
bedded operations. The only exceptions are the interrupt-handlers, which must be iso-
lated in low-level functions.

Terra uses the same execution model of Céu to provide execution guarantees. Ba-
sically the application program is broken in execution trails, and each trail has an
address as entry point and a end opcode at the end. For example, a simple block with
a command await is broken in two trails. The beginning of the block is the first entry
point and the position after the await command is the second entry point. The run-

ACM Transactions on Sensor Networks, Vol. 1, No. 1, Article 11, Publication date: January 2015.

Terra: Flexibility and safety in Wireless Sensor Networks 11:13

config do
regtype radioMsg with
var ubyte sequence;
var ushort value;

end

output void REQ_TEMP void 1;
output void SEND_SENSOR radioMsg 2;

input ushort TEMP void 1;

function ubyte getNodeId();
function ubyte queuePut(radioMsg);

end

Fig. 8. A simple configuration block example.

time maintains a set of slots for execution entry points. When an event is received, the
engine scans all slots to execute, one by one, all trails that were awaiting this event.

3.4. The Compiler
The Terra compiler inherits all the static checking and basic structure of the Céu com-
piler. The compiler checks scripts for non-deterministic memory accesses, tight loops,
and other properties, such as whether all possible block cancellations are captured by
a finally statement.

The main modifications for Terra are the types described in section 3.1 and the new
bytecode generation. Other modifications included the addition of expression opera-
tions, as Céu relies on the C compiler for expressions, and some checks and code op-
timizations. The absence of pointers in Terra’s type system pointers avoids all kind of
references to external variables and also avoids memory leaking. Checking types on
assignments further enhances safety.

Terra has a hybrid set of instructions with some opcodes using a stack and other
opcodes using arguments. Most opcodes accept variable-sized arguments. This is im-
portant to reduce the bytecode program size. The user program is converted to a byte-
code representation to be interpreted by the virtual machine. During code generation
the compiler checks for optimization opportunities. Whenever possible, code genera-
tion avoids the use of stack operations. Expressions with binary operations like sum
or minus must use the stack.

An example of optimization is a simple assignment like v1 = v2; represented by the
bytecode in Figure 9. Considering both as short type and in a lower memory locations
(i.e needing 1-byte addresses), we will have seven bytes of non-optimized code against
three bytes of optimized code.

3.5. Virtual machine
tVM is composed by three modules as shown in Figure 10.

The VM module is the main module. It provides an interface for receiving new appli-
cation code from the Basic Services module and three interfaces for customized events
and functions. The Engine submodule controls the execution of code interpreted by
the Decoder submodule and of the external events received from the Event Queue sub-
module. We opted for a stack-based architecture because of its smaller code size in
comparison to register-based architectures [Gregg et al. 2005].

ACM Transactions on Sensor Networks, Vol. 1, No. 1, Article 11, Publication date: January 2015.

11:14 A. Branco et al.

/*** Not optimized + stack ***/
01 : push &v2 : opcode
02 : : addr2Low
03 : : addr2High
04 : push &v1 : opcode
05 : : addr1Low
06 : : addr1High
07 : setshort : opcode
total of 7 bytes

/*** Optimized ***/
01: setshort &v1, &v2 : opcode
02: : addr2Low
03: : addr1Low
total of 3 bytes

Fig. 9. A code optimization example.

Fig. 10. tVM modules

The Basic Services module controls the communication primitives to give support
to code dissemination and to the custom communication interface. The Upload Con-
trol submodule controls the dissemination protocol and loads code into local memory.
The Custom Comm submodule has a generic interface to support new communication
protocols defined at the Custom Components module level. The Custom Components
module implements specific flavors of Terra.

An output event is always defined with no return value. These events may have
one argument of any type, including address values of integer types or register/packet
types. Each custom operation must know how to deal with its argument. An address
value is used by custom operations to directly access data in the virtual machine mem-
ory.

Custom functions may have zero or more arguments of integer type or addresses
of integers or registers. All arguments are passed via stack and the custom operation
must pop from the stack exactly the number of arguments defined in the configuration
block. A custom function must always return an integer value by pushing it to the
stack. The use of stack is important to enable the use of functions inside expressions.

An input event may be defined to return an integer value or an address. In all cases,
the returned data is copied to the memory location defined in the assignment oper-
ation. In the case of an address value, the custom operation must pass the internal
buffer address that holds the data.

ACM Transactions on Sensor Networks, Vol. 1, No. 1, Article 11, Publication date: January 2015.

Terra: Flexibility and safety in Wireless Sensor Networks 11:15

3.6. Terra operation
After tVM is loaded at all network nodes, the user can upload his script to be dissemi-
nated via radio to the network nodes.

The VM is typically loaded over a wired interface for each node as for any TinyOS
program. It is also possible to run a simulated version in the TOSSIM TinyOS Sim-
ulator or in the AVRORA Emulator. Currently, a basic Terra implementation may be
configured to run the same script in a hybrid network with MicaZ and TelosB. As both
radios are compatible, intercommunication is guaranteed.

To execute a script, the programmer writes a tCéu program, compiles it, and uploads
its bytecode to the network. The compilation process must include a specific Terra defi-
nition file for the chosen virtual machine. The script can use only events and functions
defined in the included file. The generated bytecode must then be disseminated over
the WSN using Terra’s upload tool. This tool transfers the bytecode to the basesta-
tion node connected to the computer via wired interface. The base station node then
starts the dissemination algorithm to send the bytecode program to all nodes. This
algorithm uses the flood concept where all nodes forward each radio message until all
nodes are reached. The current Terra tool and dissemination algorithm distribute the
same program to all nodes.

3.7. Bytecode dissemination algorithm
The current Terra version disseminates the same bytecode to all nodes in the net-
work. We assume that bytecode dissemination starts on a computer connected to a
basestation node via wired interface. The virtual-machine code includes a dissemina-
tion algorithm that floods code blocks into the network. Each block goes as a wave.
The basestation starts the flooding process with a newProgramVersion message and
next sends the bytecode blocks. Each node forwards each new received message to its
neighbors (all nodes at 1-hop radio range). All messages carry a version number and a
sequence number to allow individual nodes to decide when it is a new program version.
A periodic timeout forces each node, if necessary, to request any missing block from its
neighbors. For the case when one node is switched on after the others, the algorithm
also includes a startup request to neighbor nodes.

Table IV, in Section 4.2, presents some examples of code size. In the same section,
Table V presents the dissemination duration.

4. EXPERIMENTS
We implemented Terra in TinyOS-2. Besides the basic components of TinyOS,
the basic tVM image includes the CTP (Collection Tree Protocol) component
[Gnawali et al. 2009]) for routing messages from motes to the base station. The pro-
tocols for group communication and data dissemination were built over the primitives
for communication between nodes. Control of procedures and events in the virtual ma-
chine were easily developed over nesC/TinyOS programming model. tVM currently
runs on the MicaZ mote [Memsic 2009a] coupled with MDA100/MTS300 sensor board
and on TelosB mote [Memsic 2009b].

In this section, we conduct evaluations of tVM from five different points of view. In
Section 4.1, we try to estimate the overhead incurred by interpretation. To this end, we
compare computing-intensive code written in Terra and in the native nesC program-
ming language. Next, in Section 4.2, we measure the cost of updating an application
and, in Section 4.3, we measure the time of bytecode dissemination over networks of
different sizes. In Section 4.4, we compare code size and memory usage for two differ-
ent tVM customizations. Finally, in Section 4.5, we illustrate how simple it is to write
a real parameterized application using Terra.

ACM Transactions on Sensor Networks, Vol. 1, No. 1, Article 11, Publication date: January 2015.

11:16 A. Branco et al.

We used the Avrora instruction-level simulator [Titzer et al. 2005] to simulate the
MicaZ hardware in the controlled tests.

4.1. tVM Overhead Benchmarking
We use two different tests to evaluate the overhead incurred by the VM as compared
with direct execution over TinyOS. In the first test, we run a simple CPU-bound ap-
plication: a loop that continuously increments a value. This would be an extremely
uncharacteristic pattern for sensor network applications, which typically pass through
relatively long intervals of quiescence, followed by short periods of activity, triggered
by external events. The idea of this test is to stress the processing capacity of tVM to
the limit. In the second test, we measure the overhead of the tVM in a more typical
scenario, in which the application repeatedly reads data from a sensor in a loop.

In each test, we run both variants of the application for five minutes. At interval of
ten seconds, the applications send the value of the loop counter to the base station.

In both systems, programs are coded with event-based loops. In Terra, as a tight
loop is forbidden, we use an I/O pin reading to break the loop with an await. The
I/O pin return event is generated immediately from the request. In the nesC/TinyOS
version, each iteration posts a task representing the following one. The CTP component
is used for sending messages to the base station both in the implementation of the tVM
runtime and in the nesC/TinyOS version.

To compare the results, we use two metrics. The first one is the total number of
iterations executed along the five minutes that the applications are left running. This
number is the value of the counter sent to the base station at time 300s. The goal of
using this metric — which can be measured both in real motes and in the simulator
— is to have a rough idea of the relative processing speeds of the two platforms. The
second metric we use is the total number of cycles in Active and Idle state2. The values
for this metric were obtained through the simulations on Avrora.

4.1.1. Scenario 1 - CPU-bound Application. Table I presents the results obtained with
Avrora for our first test scenario. Figures 11 and 12 shows the code we used for this
experiment. In the nesC version, the main loop is executed in a TinyOS task that
contains only two commands: the loop counter increment and the the (re)post of the
task itself. A periodic timer sends the counter value to BaseStation each 10s. In Terra
we have a “par” with two sections. The first section controls the loop and increment the
counter variable and the second section sends the counter value to the BaseStation for
each 10s.

Table I. CPU-bound Test

Metric Program Version
Terra(a) nesC(b) b/a

loop counter 516,291 9,902,517 19.18
active cycles 2,188,784,911 2,211,835,350 1.01
idle cycles 30,427,889 4,650 0.0

As expected in loops with no blocking operations, the CPU was kept busy almost
100% of the execution time. The cost of interpretation becomes explicit in the value
of the loop counter obtained at time 300s. The TinyOS version ran 19.18 times the
iterations executed by the VM version.

2TinyOS keeps the CPU in idle state when the task queue is empty. The CPU goes into active state when it
receives an interruption.

ACM Transactions on Sensor Networks, Vol. 1, No. 1, Article 11, Publication date: January 2015.

Terra: Flexibility and safety in Wireless Sensor Networks 11:17

var msg msg1;
msg1.value4 = 0;
par do

loop do
emit REQ_CUSTOM_A(0);
await CUSTOM_A;
msg1.value4 =
msg1.value4 + 1;

end
with

loop do
await 10s;
emit SEND_BS(msg1);

end
end

Fig. 11. Code for CPU-bound experiment in Terra.

task void incTask(){
counter++;
post incTask();

}

Fig. 12. Code for CPU-bound experiment in TinyOS/NesC.

We also executed this same test directly on a MicaZ mote. The relation between the
values obtained for the loop counter were quite close to the ones from the simulation.
(Values were respectively 533.353 and 9,902,443.)

We now estimate the number of cycles per instruction in tVM. The main loop of our
test script translates to eight instructions in the virtual machine. We can divide the
total number of CPU cycles by the final value of the counter (number of times that the
loop was executed) to obtain the number of CPU cycles per loop iteration, and then
divide this result by 8 to estimate the number of cycles per instruction. The result is
513 cycles, which is close to the 400-cycles value obtained in the micro-benchmark of
ASVM (section 4.5 §2 of [Levis et al. 2005]) and to the value of 550 cycles reported for
DVM (section 4.1 §2 of [Balani et al. 2006]).

4.1.2. Scenario 2 - IO-bound application. In this test, the application repeatedly reads the
sensor and increments the loop value when the sensor returns a value. Figures 13 and
14 shows the code we used for this experiment. In the nesC version, the main loop is a
TinyOS event handler that again contains two commands: the loop counter increment
and the call sensor.read() call, which initiates a new sensor reading. At this point,
TinyOS places the CPU in Idle state. When an interruption occurs, TinyOS generates
a new task to (re)execute the event handler. In the Terra version, the loop is the main
procedure for the VM, and also contains two commands: the loop counter increment
and the instruction for requesting a value from the sensor. After this request, the VM
becomes idle awaiting new events, and again TinyOS puts the CPU in Idle state. When
an interruption occurs, TinyOS generates a task to execute the event handler for the
sensor, and this in turn generates an event for the VM. The VM then posts a task to
(re)initiate the main procedure.

Table II presents the results for this scenario.
In this case, predictably, CPU active time was much less than in the first scenario.

CPU was idle around 87%-95% of the time. The nesC variant executed approximately

ACM Transactions on Sensor Networks, Vol. 1, No. 1, Article 11, Publication date: January 2015.

11:18 A. Branco et al.

var msg msg1;
msg1.value4 = 0;
var u16 value;
par do

loop do
emit REQ_PHOTO();
value = await PHOTO;
msg1.value4 = msg1.value4 + 1;

end
with

loop do
await 10s;
emit SEND_BS(msg1);

end
end

Fig. 13. Code for IO-bound experiment in Terra.

event void s.readDone(error_t result, uint16_t val){
counter++;
call sensor.read();

}

Fig. 14. Code for IO-bound experiment in Terra (top) and in TinyOS/NesC (bottom).

Table II. IO-bound Test

Metric Program Version
Terra(a) nesC(b) b/a

loop counter 27,215 29,949 1.10
active cycles 284,515,620 116,793,722 0.50
idle cycles 1,934,697,180 2,095,046,278 1.08

10% more iterations then the Terra variant. As regards CPU cycles, however, the Terra
version needed around double the cycles used by nesC. In Terra, CPU was active 12.8%
of the time, while in nesC only 5.3%.

Direct execution on the MicaZ mote again produced results close to the simulator’s:
the value of the counter was 27,129 for the Terra version and 29,997 for the nesC one.

In Terra, approximately 90 iterations were executed per second. In ASVM, in a simi-
lar test, the ratio of 312.5 iterations per second was obtained (5000 loops per 16.0 sec in
section 4.5 §4 of [Levis et al. 2005]). The difference in values was apparently due to the
analog-digital conversion in sensor readings, as in our case the number of iterations
was the same as that of direct execution over nesC/TinyOS.

The results for this second scenario give us an important insight about the real
costs incurred by interpretation. Although the execution of interpreted code is more
expensive than that of the native, nesC, code, this difference practically disappears
in an I/O bound pattern, which although extreme in this case, is closer to the typical
pattern for wireless sensor network applications.

4.1.3. Energy consumption analysis. Table III shows the values of energy consumption
that are reported at the end of execution of the second test scenario with the Avrora
simulator. The values are shown in Joules and represent consumption for a 300 sec-

ACM Transactions on Sensor Networks, Vol. 1, No. 1, Article 11, Publication date: January 2015.

Terra: Flexibility and safety in Wireless Sensor Networks 11:19

ond execution in Terra and in nesC. We analyse only values for the two major energy
consumers, radio and CPU.

Table III. IO-Bound Energy
consumption results

Terra nesC

Radio 16.86J 16.86J
CPU 3.50J 3.21J

As expected, because radio utilization was similar in the two implementations, the
values are the same for this item. The difference in energy consumed by the CPU is
due to the difference in the periods of activity: in Terra we had two times the number
of active cycles used by nesC. An active cycle consumes roughly 2.3 times the energy
consumed by an idle one. However, because the total number of active cycles still re-
mains small in proportion to the number of idle cycles, energy consumption was only
9% higher. This overhead would typically diminish, possibly to negligible rates, in real
applications, in most of which the active/idle ratio is very small.

4.2. Reconfiguration cost
In this section, we try to estimate the cost of disseminating new code for Terra. This
cost depends on several factors, such as the number of nodes, the topology of the net-
work, the dissemination algorithm, and the noise/failure conditions that can lead to
retransmissions. In this work, we stick to measures that are independent from the
network, and use the number of bytes (and consequent number of messages) as our
metrics for reconfiguration cost.

Table IV presents the number of bytes we obtained for three simple applications
written in Terra. As a basis for reference, we compare these sizes with their counter-
parts coded directly over TinyOS. This is of course the advantageous situation for a
virtual machine, as in Terra only the script needs to be transferred to motes, while in
TinyOS one must transfer the whole binary image. Nevertheless, it is useful to have a
more exact idea of the difference between the two approaches.

The Terra configuration tool runs in a server computer connected to the BaseStation
mote and is used to send new tVM programs to nodes. The current implementation
stops and resets all nodes at the beginning of program dissemination. Each node starts
automatically when the transfer is completed.

For all applications, application size is obtained from the compilers. We consider
that messages can hold up to 24 bytes to estimate the number of messages necessary
for reprogramming the network with these applications, assuming the default 28-byte
message size of TinyOS with 4 bytes used by the control protocol.

The first value in each cell in Table IV indicates the number of bytes and the second
one, in square brackets, the number of required messages. The first application is the
classic Blink example from the TinyOS tutorial. This is a good example because it
uses no special components, only timers and leds. In the Terra version we kept the
same structure of Blink.nc, using three timer entities. Application rdLoop1 is the same
application used in Section 4.1.2 in its Terra and nesC versions. Application rdLoop2
is a version of rdLoop1 for nesC without the CTP component.

The Blink application illustrates the cases in which the nesC application requires no
auxiliary components for communication. The large difference to the value in rdLoop1
is due to the latter’s use of components for radio communication and message routing
(CTP). In the nesC version, the CTP component is included in the generated code, while
in Terra it is pre-loaded in the motes. Application rdLoop2 attains an intermediate

ACM Transactions on Sensor Networks, Vol. 1, No. 1, Article 11, Publication date: January 2015.

11:20 A. Branco et al.

Table IV. Reprogramming Cost

App Program Version
Terra(a) nesC(b)

Blink 93 [4] 2048 [86]
rdLoop1

88 [4]
18188 [758]

rdLoop2 13022 [543]
Units: Bytes [Messages]

value because it does not use CTP, but still relies on basic communication components
(With rdLoop2, we are simulating a situation in which the programmer knows he will
not need a given module. In the specific case of rdLoop2, the application runs without
routing — each node involved is in the direct range of the base station.).

4.3. Bytecode dissemination
Although dissemination itself is not part of our research goals, we report in this Sec-
tion some measurements of the dissemination time. The dissemination algorithm must
include a delay after each disseminated packet/message. This avoids radio messages
collision during the flood process, but we would naturally like dissemination time to
be short and to scale well. The full upload process comprises the upload to the bases-
tation via wired interface and the dissemination over the network via radio messages.
Here we are considering only the time for radio dissemination. To obtain it, we need
to get the start time and the end time of the radio dissemination process. Because the
process starts with a message sent by the root node and ends at an arbitrary node (the
last one to receive the code), we need a global clock to synchronize the local clock in
each node, as we only have the local nodes time. Our solution was to use the TinyOS
simulator (TOSSIM) as it provides a global simulated clock in all radio messages logs.
Additionally, TOSSIM uses a noise model to simulate message collisions and losses.
Using this facility, we forced the dissemination algorithm to spend some time in its
recovery stage, which would be a probable scenario in a real-world use.

We ran our test using a script for a real monitoring application that includes routing
to the basestation. The program bytecode has 24 message blocks to be disseminated.
Table V presents the dissemination times for three scenarios. The first scenario is
a very basic case with only one node. The second scenario considers a grid with 9
nodes (3 x 3) and the third scenario considers a grid with 49 nodes (7 x 7). In our grid
network, each radio node ranges only to its 1-hop neighbor node, i.e. all nodes range
up to 8 nodes. Only one corner node exchanges messages with the basestation. This
configuration forces the use of the flooding mechanism. Figure 15 shows an example
for the 7 x 7 grid with the radio range highlighted for the nodes 11, 32, and 44. We
also measured the time it took to load the program in each node. Table V includes the
minimum time, the maximum time and the average time for each scenario.

All dissemination tests were done considering that all radios were switched on. We
have some premature work in duty cycling the radio on and off to reduce power con-
sumption but, depending of duty cycle configuration, the dissemination time can be 10
times larger. We plan to build a hybrid radio control module which cancels the duty
cycle mode during the bytecode dissemination.

The dissemination for the single-hop scenario took 7.17 seconds for 24 messages,
that is, approximately 300ms per message. The 300ms step delay time is exactly the
configuration parameter used in our algorithm. Using one real node it is possible to
measure a similar duration, but the reference is a message sent back to the computer.
In our real-node test we got 7.2 seconds. Although it is possible to use lower values for
the step delay time to reduce the total dissemination duration, we chose to be more

ACM Transactions on Sensor Networks, Vol. 1, No. 1, Article 11, Publication date: January 2015.

Terra: Flexibility and safety in Wireless Sensor Networks 11:21

Fig. 15. Simulated 7x7 grid - node 11, 32, and 44 with radio range highlighted.

Table V. Dissemination time

Scenario Total Nodes Total Duration Average time min time max time

#1 1 7.17 7.17 7.17 7.17
#2 9 7.25 6.76 6.70 7.17
#3 49 7.50 6.58 6.40 7.17

all durations in seconds

conservative to minimize radio collision in dense networks. The tVM customizer may
choose different values for this parameter. This subject is matter of more investigation
and depends on network topology. The differences beween minimum, maximum, and
average times are of fractions of seconds. Considering the nature of WSN applications,
in general these differences don’t affect system operation.

Comparing results for the different scenarios we get the time for each additional hop
in the network. In general, as our dissemination algorithm floods message by message
in sequential waves, the total time doesn’t increase much as the network grows. In
our case this time varied from 40ms up to 55ms. These values are consistent with
our radio-send policy, where the sending message is delayed randomly from 20ms up
to 95ms. Based on the scenarios #2 and #3, respectively with 9 and 49 nodes, the
dissemination time has increased only 250ms (3.45%) for a an increment of 40 nodes
(444%). This shows that the system is easily scalable.

4.4. Code size and memory usage
To measure code size and memory usage, we prepared a minimal Terra configuration
called TerraNet as defined in section 2.2. This Terra variant provides only very basic

ACM Transactions on Sensor Networks, Vol. 1, No. 1, Article 11, Publication date: January 2015.

11:22 A. Branco et al.

“send” and “receive” events. Table VI shows memory usage for two Terra configurations
(running on micaZ [Memsic 2009a]): the default configuration, with all components
described in Section 2.1 (first column), and TerraNet (second column).

Table VI. Terra Memory ocupation

Terra TerraNet
Binary code size 48286 32162
Total RAM usage 3580 3570
VM Memory size 528 1968

The table shows that the mandatory components take up 32KB of binary code
(ROM). The amount of RAM to be used must be adjusted to the specific project at hand.
The main RAM consumers are the data buffers used in communication protocols and
the memory allocated to variables and code in the application script (VM memory). In
our case, we adjust the VM memory to reach 3,5KB of maximum RAM usage because
we need some room for nesC stack usage. The MicaZ mote has only 4KB of RAM. In the
original tVM, in which the more complex components also need RAM space, we leave
up to 528 bytes for the application script. In the TerraNet version, where we took out
the complex components, we leave up to 1968 bytes for the application script.

4.5. A monitoring application
In this Section, we present a complete Terra monitoring application and discuss how it
can be tuned remotely by sending new values for parameters used in its configuration.

Figure 16 presents our application, which monitors the average temperature as mea-
sured by motes in well-lighted points. The user can remotely define the threshold for a
place to be regarded as “well-lighted”.

The basis for this application is the algorithm for group creation available in the
default Terra runtime. The average value is computed by the aggregation modules
at all nodes participating in the group composed of nodes at well-lighted spots. The
coordinator node is defined statically, and in our example is node with ID 2. Each node
decides whether it participates or not in the group, according to its luminosity reading
and to the currently defined threshold.

The program is formed by a parallel block containing a loop in each of its arms: in
the first one, nodes decide, every 20 seconds, whether or not they belong to the group
of well-lighted positions, while in the second loop, at every 60 seconds, the coordinator
node collects the average temperature reading and sends it back to the base station.
In the first loop, after awaiting for 20 seconds (line 12), each node emits an event re-
questing a reading from the luminosity sensor (line 13) and awaits for its reply (line
14). Next, the result is compared to parameter phLevel, the threshold value, and the re-
sult is assigned to variable (grA.isMember), which determines participation in the group
(line 15). In the second loop, after awaiting for 60 seconds (line 19), the node checks
whether it is the coordinator (line 20), and if so, it emits an event which triggers ag-
gregation of the temperature readings in the group (line 21). This event is handled by
Terra’s aggregation component, which was initialized with the convenient parameters
in line 2. Next, the coordinator awaits for the aggregation to be completed (line 22),
and sends the result to the base station (lines 23-24).

This application uses two values that can be regarded as its parameters: variable
phLevel indicates the threshold level for a point to be considered well-lighted and vari-
able gr1.leader contains the ID of the coordinator node. (gr1.leader field is automat-
ically defined inside var group gr1; command at lines 1 and 2.) It would be trivial to
change these values after the application is installed, causing a simple reconfiguration.
Using 16-bit values, only one message would be necessary to carry the new values. The

ACM Transactions on Sensor Networks, Vol. 1, No. 1, Article 11, Publication date: January 2015.

Terra: Flexibility and safety in Wireless Sensor Networks 11:23

1: var group gr1;
2: grNew(&gr1,1,0,3,TRUE,OFF,2);
3: var aggreg agA;
4: agNew(&agA,&gr1,TEMP,AVG,GTE,0);
5:
6: var ushort phLevel=100; // Photo param
7: var msg dataMsg; // Message struc
8: var agResult data; // Agg result struc
9:
10: par do
11: loop do // Group loop
12: await 20s;
13: emit REQ_PHOTO();
14: var ushort phVal = await PHOTO;
15: grA.isMember = (phVal > phLevel);
16: end
17: with
18: loop do // Aggregation/sendBS loop
19: await 60s;
20: if (NODE_ID == gr1.leader) then
21: emit AGGREG(&agA);
22: data = await AGGREG_DONE;
23: dataMsg.value4 = data.value;
24: emit SEND_BS(&dataMsg);
25: end
26: end
27: end

Fig. 16. Monitoring Application in Terra.

output file from Terra compiler shows the memory address for all program variables,
enabling reconfigurations to be carried out by updating the specific addresses corre-
sponding to the variables that must be modified. If necessary, more than one message
can be used to update such parameters. However, because the reconfiguration mes-
sage need contain only the parameters that undergo modifications, it is often possible
to work with a single message.

More complex updates to the application could be carried out either by programming
it in the first place with more variables for remote configuration, or by sending a whole
new script to the motes. The application shown in Figure 16, for instance, occupies 213
bytes, and could thus be sent to a mote with nine messages.

5. RELATED WORK
Terra’s basic proposal is to combine the advantages of using application-specific, or
high-level, virtual machines with a scripting language that provides a set of facilities
and guarantees. In this section we report on work that is related to each of these
approaches and discuss how Terra relates to it.

To our knowledge, the first work proposing the use of virtual machines in WSN is
Maté [Levis and Culler 2002]. The Maté VM is built on TinyOS and has a very simple
instruction set. The code propagation and execution is broken up into 24 instructions
called capsules. A capsule fits into a single message packet. Maté limits its context
execution to only three concurrent paths, one for sending messages, another one for
receiving messages, and a third one for a timer. Maté has up to 8 user-defined in-

ACM Transactions on Sensor Networks, Vol. 1, No. 1, Article 11, Publication date: January 2015.

11:24 A. Branco et al.

structions that enable additional virtual machine customization and its operand stack
has a maximum depth of 16. To address some of Maté’s limitations the Maté team
built ASVM [Levis et al. 2005]. ASVM is an application-specific virtual machine. The
authors proposed a custom runtime machine to support different application-specific
high-level languages, but each language needs its own compiler. ASVM implements a
central concurrency manager to support the sequential execution on concurrent han-
dlers. This is an optional service to help user applications avoid race conditions. This
solution assumes that handlers are short-running routines that do not hold on to re-
sources for very long.

DAViM [Michiels et al. 2006] is very similar to ASVM but adds the possibility of
parallel execution. DVM [Balani et al. 2006] is based on the application-specific VM
concept from ASVM, but it uses SOS [Han et al. 2005] as its operating system. SOS
allows dynamic loading of system modules. In DVM, it is possible to load differ-
ent combinations of high-level scripting languages and low-level runtime modules.
DVM [Balani et al. 2006] and DAViM [Michiels et al. 2006] also use a concurrency
manager like ASVM’s.

Several groups have worked on VMs for Java. VMStar [Koshy and Pandey 2005]
uses the Java as high-level language for customized VMs. The VMStar toolset helps
to build a new VM runtime from the device characteristics and the component li-
brary. VMStar uses a “select” concept to register event-wait points in a sequential
program. The select interface executes event handlers sequentially to avoid race con-
ditions, in a single-thread implementation. VMStar inherits type-safety from Java,
like the others Java VMs. NanoVM [Harbaum 2005], ParticleVM [Riedel et al. 2007],
TakaTuka [Aslam et al. 2008], and Darjeeling [Brouwers et al. 2009] also use Java
as their programming language. Inspired on TinyDB [Madden et al. 2005], Swis-
sQM [Mueller et al. 2007] has a query-specific instruction set and a high-level lan-
guage similar to SQL.

Cosmos and Regiment implement customizable VMs with high-level languages that
are specifically designed for WSNs. Cosmos [Awan et al. 2007] uses mPL as high-level
language and mOS as operating system. mPL supports intra-network operation pro-
gramming, that is, network-wide operations. A Cosmos application is defined by a data-
flow graph and some custom C functions loaded within mOS. The mOS system executes
the application graph as script. The scripting language is limited to the data flow con-
trol using the custom mOS functions. Cosmos also allows dynamic loading of new C
functions. The graph approach also limits the application types. In Cosmos, an event
handler is represented as a Functional Component (FC). A FC uses only local vari-
ables and its data are exchanged by input/output interface queues. These character-
istics avoid race conditions. Regiment [Newton and Welsh 2004; Newton et al. 2007]
uses a reactive functional language with a special semantic for intra-network opera-
tions. The runtime implements the basic operations and access to devices. A Regiment
application is compiled to a intermediate language called Token Machine(TM). A TM
segment propagates into the network and it is interpreted to execute local operations
or intra-network operations like group formation and aggregation. In Regiment, an
event handler task run to completion and cannot be blocked. This also avoids race
conditions.

Discussion
tVM architecture combines small size with a model that is less restrictive than Maté’s.
Because Terra implements the Céu concurrency model, it is possible to have several
concurrent execution paths. Terra also enables up to 255 ids for each group of input
events, output events, and functions. tVM stack is defined at compile time and is lim-
ited only by memory space shared with application script.

ACM Transactions on Sensor Networks, Vol. 1, No. 1, Article 11, Publication date: January 2015.

Terra: Flexibility and safety in Wireless Sensor Networks 11:25

Differently from DVM and Cosmos, Terra doesn’t allow low-level code loading, but
Terra natively supports remote parameterization of runtime components. We believe
Terra’s reactive programming model, similarly to Regiment’s, is more suitable to event-
driven application then the traditional program models. In a tCéu program is possible
to suspend a execution of one program block and wait for an event without suspending
all others program blocks. Terra inherits the Céu execution control in which a trail
(a Céu handler) is serialized to execute to completion. Céu trails are similar to Pro-
tothreads coroutines [Dunkels et al. 2006], because they both offer multiple sequential
lines of execution to handle concurrent activities. This execution mode minimizes race
conditions and doesn’t burden the user with synchronization mechanisms (centralized
controls, interface queues, or semaphores and mutexes). It still may get race condi-
tions from multiples trails waiting for the same event and writing the same memory
address. The compiler has an analysis mode which find these race conditions. This
analysis mode is similar to the safe annotations from TinyOS but it is checked at com-
pile time. Well tested built-in components extend the safety guarantees to runtime.
tCéu avoids tight loops which not recommended but allowed by most of the related
work. By itself, tCéu doesn’t give execution guarantees in intra-network operations. In
Terra, these guarantees may be given by built-in runtime intra-network operations.
Terra doesn’t support network-wide programming. The user must think about the ap-
plication as a whole but write the code that each node will run. However, the provision
of components inspired by macro-programming alleviates this problem in some mea-
sure, by abstracting some typical collective operations.

6. CLOSING REMARKS
In this work, we explored the combination of two complementary technologies for pro-
gramming WSNs: a language (tCéu) with static execution guarantees and a virtual
machine (tVM) with a component library built to support typical application patterns.

On one hand, we used concepts from synchronous and reactive programming to pro-
vide static guarantees of bounded and race-free execution while maintaining sufficient
expressiveness. Although a language with these characteristics brings benefits to the
programmer, it will always depend on external code to interact with the environment.
In WSN applications, this interaction is restricted to a number of patterns for commu-
nication, sensing, and control. The use of a virtual machine with pre-packaged com-
ponents for these tasks complements the guarantees of the language, enabling the
program to interact with the environment while maintaining its safety. In general, we
don’t need to change these pre-packaged components after deployment. Pre-packaged
components depend on the characteristics of hardware and on the network topology
already defined in the deployment phase.

Terra allows the programmer to combine events with a sequential programming
style while ensuring the absence of data races and of out-of-bound errors. It also guar-
antees that there are no unbounded loops. We know of no other WSN system with this
guarantee.

Although this guarantees safety in the tCéu part of the application, the script must
have access to the external world to communicate with other motes and to interact
with sensors and actuators. In Terra, the only available external calls are those pro-
vided by the application-specific VM in use. The operations discussed in sections 2.1.2
and 2.1.1, which were inspired by macroprogramming proposals [Awan et al. 2007;
Gummadi et al. 2005; Kothari et al. 2007], extend the safe execution guarantees to the
Terra runtime.

The use of a virtual machine allows for applications with small code size. This, to-
gether to the dissemination algorithm of Terra, allows dissemination of a program
in a few seconds with low energy consuption and in a scalable fashion. Also our ex-

ACM Transactions on Sensor Networks, Vol. 1, No. 1, Article 11, Publication date: January 2015.

11:26 A. Branco et al.

periments give us promising insights about the real costs incurred by interpretation.
Although the execution of interpreted code is more expensive than that of the native,
nesC, code, this difference practically disappears in an I/O bound pattern.

Terra is currently being used at PUC-Rio for hands-on classes in WSN as part of
two different courses (final undergraduate/graduate): Reactive Programming and Dis-
tributed Systems. In our experience (approximately four semesters), students have
better learning curve experience with Terra than with the traditional nesc/TinyOS
environment, and manage to develop relatively complex projects in a few weeks.

As future work, we are planning to evaluate the resources of Terra for different
programming abstraction levels. Each Terra customization will represent a different
abstraction flavor that works at a different level of programming abstraction. Also, as
future work, we are planning to test Terra limits trying to build a heavy CPU con-
sumer application like Volcano [Tan et al. 2013]. As regards energy consumption, we
are planning to investigate the behavior of a radio low power listening protocol during
script dissemination. All these experiments and investigations may give us insights
and optimizations to be included in the next Terra version. Finally, because the work
on Terra was born from our interest in WSN macroprogramming and from thinking
that we needed node-level support before moving to the network level, we might now
be able to move on to this investigation, using Terra as base system for a new macro-
programming language.

ACKNOWLEDGMENTS

The authors would like to thank the partial support from CNPq – Brazilian National Counsel of Technolog-
ical and Scientific Development and FAPERJ – Rio de Janeiro Research Foundation.

REFERENCES
Faisal Aslam, Christian Schindelhauer, Gidon Ernst, Damian Spyra, Jan Meyer, and Mohannad Zal-

loom. 2008. Introducing TakaTuka: a Java virtualmachine for motes. In Proceedings of the 6th ACM
conference on Embedded network sensor systems (SenSys ’08). ACM, New York, NY, USA, 399–400.
DOI:http://dx.doi.org/10.1145/1460412.1460472

Asad Awan, Suresh Jagannathan, and Ananth Grama. 2007. Macroprogramming heterogeneous
sensor networks using cosmos. In Proceedings of the 2nd ACM SIGOPS/EuroSys European
Conference on Computer Systems 2007 (EuroSys ’07). ACM, New York, NY, USA, 159–172.
DOI:http://dx.doi.org/10.1145/1272996.1273014

Amol Bakshi, Viktor K. Prasanna, Jim Reich, and Daniel Larner. 2005. The Abstract Task Graph: a method-
ology for architecture-independent programming of networked sensor systems. In Proceedings of the
2005 Workshop on End-to-End, Sense-and-Respond Systems, Applications and Services (EESR ’05).
USENIX Association, Berkeley, CA, USA, 19–24.

Rahul Balani, Chih-Chieh Han, Ram Kumar Rengaswamy, Ilias Tsigkogiannis, and Mani Srivastava. 2006.
Multi-level software reconfiguration for sensor networks. In Proceedings of the 6th ACM & IEEE In-
ternational Conference on Embedded Software (EMSOFT ’06). ACM, New York, NY, USA, 112–121.
DOI:http://dx.doi.org/10.1145/1176887.1176904

Adriano Branco. 2011. A WSN programming model with a dynamic reconfiguration support. Master’s thesis.
PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO. Text in portuguese.

Niels Brouwers, Koen Langendoen, and Peter Corke. 2009. Darjeeling, a feature-rich VM for the resource
poor. In Proceedings of the 7th ACM Conference on Embedded Networked Sensor Systems (SenSys ’09).
ACM, New York, NY, USA, 169–182. DOI:http://dx.doi.org/10.1145/1644038.1644056

H. Cervantes, D. Donsez, and L. Touseau. 2008. An Architecture Description Language for Dynamic Sensor-
Based Applications. In Consumer Communications and Networking Conference, 2008. CCNC 2008. 5th
IEEE. 147–151. DOI:http://dx.doi.org/10.1109/ccnc08.2007.40

A. Dunkels, B. Gronvall, and T. Voigt. 2004. Contiki - a lightweight and flexible operating system for tiny
networked sensors. In Local Computer Networks, 2004. 29th Annual IEEE International Conference on.
455–462. DOI:http://dx.doi.org/10.1109/LCN.2004.38

Adam Dunkels, Oliver Schmidt, Thiemo Voigt, and Muneeb Ali. 2006. Protothreads: simplifying event-
driven programming of memory-constrained embedded systems. In SenSys ’06: Proceedings of the 4th

ACM Transactions on Sensor Networks, Vol. 1, No. 1, Article 11, Publication date: January 2015.

Terra: Flexibility and safety in Wireless Sensor Networks 11:27

international conference on Embedded networked sensor systems. ACM, New York, NY, USA, 29–42.
DOI:http://dx.doi.org/10.1145/1182807.1182811

David Gay, Philip Levis, Robert von Behren, Matt Welsh, Eric Brewer, and David Culler.
2003. The nesC language: A holistic approach to networked embedded systems. (2003), 1–11.
DOI:http://dx.doi.org/10.1145/781131.781133

Omprakash Gnawali, Rodrigo Fonseca, Kyle Jamieson, David Moss, and Philip Levis. 2009. Collection tree
protocol. In Proceedings of the 7th ACM Conference on Embedded Networked Sensor Systems (SenSys
’09). ACM, New York, NY, USA, 1–14. DOI:http://dx.doi.org/10.1145/1644038.1644040

David Gregg, Andrew Beatty, Kevin Casey, Brian Davis, and Andy Nisbet. 2005. The case
for virtual register machines. Science of Computer Programming 57, 3 (2005), 319 – 338.
DOI:http://dx.doi.org/10.1016/j.scico.2004.08.005 Advances in Interpreters, Virtual Machines and Em-
ulators IVME’03.

Ramakrishna Gummadi, Omprakash Gnawali, and Ramesh Govindan. 2005. Macro-programming Wire-
less Sensor Networks Using Kairos. Distributed Computing in Sensor Systems (2005), 126–140.
DOI:http://dx.doi.org/10.1007/11502593 12

Chih-Chieh Han, Ram Kumar, Roy Shea, Eddie Kohler, and Mani Srivastava. 2005. A dynamic op-
erating system for sensor nodes. In Proceedings of the 3rd international Conference on Mo-
bile Systems, Applications, and Services (MobiSys ’05). ACM, New York, NY, USA, 163–176.
DOI:http://dx.doi.org/10.1145/1067170.1067188

Till Harbaum. 2005. The NanoVM - Java for the AVR. (2005). Retrieved August, 2014 from
http://www.harbaum.org/till/nanovm/index.shtml

Joel Koshy and Raju Pandey. 2005. VMSTAR: synthesizing scalable runtime environments for sensor net-
works. In Proceedings of the 3rd international conference on Embedded networked sensor systems (Sen-
Sys ’05). ACM, New York, NY, USA, 243–254. DOI:http://dx.doi.org/10.1145/1098918.1098945

Nupur Kothari, Ramakrishna Gummadi, Todd Millstein, and Ramesh Govindan. 2007. Reliable and ef-
ficient programming abstractions for wireless sensor networks. PLDI ’07: Proceedings of the 2007
ACM SIGPLAN Conference on Programming Language Design and Implementation (2007), 200–210.
DOI:http://dx.doi.org/10.1145/1250734.1250757

Philip Levis and David Culler. 2002. Maté: a tiny virtual machine for sensor networks. In ASPLOS-X:
Proceedings of the 10th International Conference on Architectural Support for Programming Languages
and Operating Systems. ACM, New York, NY, USA, 85–95. DOI:http://dx.doi.org/10.1145/605397.605407

Philip Levis, David Gay, and David Culler. 2005. Active sensor networks. In Proceedings of the 2nd Confer-
ence on Symposium on Networked Systems Design & Implementation - Volume 2 (NSDI’05). USENIX
Association, Berkeley, CA, USA, 343–356.

P. Levis, S. Madden, J. Polastre, R. Szewczyk, K. Whitehouse, A. Woo, D. Gay, J. Hill, M. Welsh, E. Brewer,
and D. Culler. 2004. TinyOS: An operating system for sensor networks. In in Ambient Intelligence.
Springer Verlag.

Samuel R. Madden, Michael J. Franklin, Joseph M. Hellerstein, and Wei Hong. 2005. TinyDB: an acqui-
sitional query processing system for sensor networks. ACM Transactions on Database Systems 30, 1
(2005), 122–173. DOI:http://dx.doi.org/10.1145/1061318.1061322

Memsic. 2009a. MicaZ datasheet. Product folder. (2009). Retrieved August, 2014 from
http://www.memsic.com/wireless-sensor-networks/MPR2400CB

Memsic. 2009b. TelosB datasheet. Product folder. (2009). Retrieved August, 2014 from
http://www.memsic.com/wireless-sensor-networks/TPR2420

Sam Michiels, Wouter Horré, Wouter Joosen, and Pierre Verbaeten. 2006. DAViM: a dynami-
cally adaptable virtual machine for sensor networks. In Proceedings of the international work-
shop on Middleware for sensor networks (MidSens ’06). ACM, New York, NY, USA, 7–12.
DOI:http://dx.doi.org/10.1145/1176866.1176868

Luca Mottola and Gian Pietro Picco. 2011. Programming wireless sensor networks: Fundamental
concepts and state of the art. ACM Comput. Surv. 43, 3, Article 19 (April 2011), 51 pages.
DOI:http://dx.doi.org/10.1145/1922649.1922656

Rene Mueller, Gustavo Alonso, and Donald Kossmann. 2007. SwissQM: Next generation data processing in
sensor networks. In Third Biennial Conference on Innovative Data Systems Research.

Ryan Newton, Greg Morrisett, and Matt Welsh. 2007. The Regiment macroprogramming system. In IPSN
’07: Proceedings of the 6th International Conference on Information Processing in Sensor Networks.
ACM, New York, NY, USA, 489–498. DOI:http://dx.doi.org/10.1145/1236360.1236422

Ryan Newton and Matt Welsh. 2004. Region streams: functional macroprogramming for sensor networks. In
DMSN ’04: Proceeedings of the 1st International Workshop on Data Management for Sensor Networks.
ACM, New York, NY, USA, 78–87. DOI:http://dx.doi.org/10.1145/1052199.1052213

ACM Transactions on Sensor Networks, Vol. 1, No. 1, Article 11, Publication date: January 2015.

11:28 A. Branco et al.

J. Ousterhout. 1998. Scripting: Higher-Level Programming for the 21st Century. IEEE Computer 31, 3
(1998), 23–30.

Till Riedel, Andreas Arnold, and Christian Decker. 2007. Poster Abstract: An OO Approach to sensor pro-
gramming. In European conference on Wireless Sensor Networks (EWSN).

Francisco Sant’Anna, Noemi Rodriguez, Roberto Ierusalimschy, Olaf Landsiedel, and Philippas Tsigas. 2013.
Safe System-level Concurrency on Resource-constrained Nodes. In Proceedings of the 11th ACM Con-
ference on Embedded Networked Sensor Systems (SenSys ’13). ACM, New York, NY, USA, Article 11, 14
pages. DOI:http://dx.doi.org/10.1145/2517351.2517360

Rui Tan, Guoliang Xing, Jinzhu Chen, Wen-Zhan Song, and Renjie Huang. 2013. Fusion-based Volcanic
Earthquake Detection and Timing in Wireless Sensor Networks. ACM Trans. Sen. Netw. 9, 2, Article 17
(April 2013), 25 pages. DOI:http://dx.doi.org/10.1145/2422966.2422974

Ben L. Titzer, Daniel K. Lee, and Jens Palsberg. 2005. Avrora: scalable sensor network simulation with
precise timing. In Proceedings of the 4th International Symposium on Information Processing in Sensor
Networks (IPSN ’05). IEEE Press, Piscataway, NJ, USA, Article 67.

Received October 2014; revised Xxxx 2015; accepted Yyyy 2015

ACM Transactions on Sensor Networks, Vol. 1, No. 1, Article 11, Publication date: January 2015.

